
UNIVERSITY OF OSLO
Department of Informatics

Flexinol as
Actuator for a
Humanoid Finger -
Possibilities and
Challenges

Master thesis (60 pt)

Øyvind Fjellang
Sæther

01.11.2008

Abstract

Robots become more and more common in our every day lives as technology develops. Robots are
normally actuated by pneumatics, hydraulics or servo motors. These technologies are mature and widely
used, but other less commonly used actuators are also available. Among these we find the artificial muscle
fiber Flexinol which belongs to a class of materials known as Shape Memory Alloys.

This thesis aims to implement the artificial muscle fiber Flexinol as actuator for a humanoid finger.
The first part of the thesis focuses on testing of single Flexinol wires to determine in what degree these
are suitable for long term use as actuators. A test frame is built to investigate contraction speed, force
and displacement for wires in different setups. Among these are tests with a small dead weight, a large
dead weight, an antagonistic setup and a setup with a spring working as a passive antagonistic force.

The second part of the thesis makes use of Flexinol as actuator when designing and prototyping a
humanoid finger. The human finger is used as inspiration in this part, applying tendons and muscles
in a human-like way. The finger is designed with CAD-software and then printed in plastic. It is then
assembled with tendons and actuated with three Flexinol wires. Finally, an attempt to control the
humanoid finger is done.

Specially designed software and hardware is developed through the thesis to implement working
experiments. Software for both a laboratory computer and a microcontroller is written to control the
system and to collect sensory data respectively.

I

II

Preface

This thesis is part of my Master Degree at the University of Oslo, Department of Informatics. The thesis
was carried out during 2008 in the research group Robotics and Intelligent Systems (ROBIN). First of
all I want to thank my supervisor, Associate Professor Mats Høvin, for creative input, for motivating me
to be creative and for valuable feedback both during my practical work and during writing.

I also want to thank the following (sorted by topic): Vegard Friis Ruud, Charlotte Kristiansen, Marie
Klemsdahl Eklund and Marte Lødemel Henriksen for fruitful discussions regarding the human anatomy,
Kjetil Stiansen for help regarding practical and theoretical electronics and Andreas Gimmestad for his
linguistic abilities.

Thanks also go to friends and family for showing interest, specially to my father Dag Henning Sæther
for guidance both during my practical work and during writing.

Øyvind Fjellang Sæther
November 2008

III

IV

Contents

1 Introduction 1
1.1 Humanoid Hands . 1
1.2 Robot Hand Actuation . 2
1.3 Flexinol - Artificial Muscle Fibers . 3
1.4 Thesis Overview . 4
1.5 Short Conclusion . 5

2 Background 7
2.1 Anatomy of The Human Hand . 7

2.1.1 Skeleton . 7
2.1.2 Tendons and Muscles . 8
2.1.3 Robotic Approach to the Human Hand . 8

2.2 Traditional Actuators . 9
2.2.1 Hydraulics . 9
2.2.2 Pneumatics . 9
2.2.3 Servo Motors . 10
2.2.4 Stepper Motors . 12
2.2.5 Electric Solenoids . 13

2.3 Intelligent Materials used as Actuators . 13
2.3.1 Shape Memory Alloys in General . 13
2.3.2 Flexinol . 15
2.3.3 Electroactive Polymers . 22

2.4 Actuator Comparison . 22
2.4.1 Power to Weight Ratio . 23

2.5 Feedback Sensors . 23
2.5.1 Displacement Transducers . 24
2.5.2 Force Transducers . 25

3 Used Tools 29
3.1 Atmel AVR Microcontrollers . 29

3.1.1 I/O-Ports . 29
3.1.2 Memory . 29
3.1.3 Interrupts . 31
3.1.4 Counters and Pulse Width Modulation (PWM) . 31
3.1.5 Universal Synchronous and Asynchronous Serial Receiver and Transmitter (USART) 31
3.1.6 Analog to Digital Converter (ADC) . 32
3.1.7 Watchdog Timer . 32
3.1.8 Clock Source . 32

3.2 Keithley KUSB-3100 . 33
3.3 Microsoft Robotics Studio . 33

3.3.1 Overview . 34
3.3.2 Concurrency and Coordination Runtime (CCR) . 34
3.3.3 Decentralized Software Services (DSS) . 34
3.3.4 Visual Programming Language (VPL) . 35

V

4 Own Methods 37
4.1 Testing of Flexinol . 37

4.1.1 Fixation Test . 37
4.1.2 Degeneration Test . 38
4.1.3 Flexinol Antagonist . 38
4.1.4 Spring Antagonist . 39
4.1.5 PWM-controlled . 39

4.2 Test Frame . 40
4.2.1 Electronics Design . 40
4.2.2 Calibration . 43

4.3 Test Software . 45
4.3.1 Software for the Test Frame . 46
4.3.2 Web Application for Remote Surveillance . 48

4.4 Humanoid Finger Design . 48
4.4.1 Anatomical Model . 50
4.4.2 3D Design . 50

4.5 Humanoid Finger Application . 53
4.5.1 Mechanical Design . 54
4.5.2 Electrical Schematics . 57
4.5.3 Communication . 57
4.5.4 Microcontroller Program . 58
4.5.5 Computer Interface Program . 63
4.5.6 Interface for Microsoft Robotics Studio . 64

4.6 Summary of Own Methods . 64

5 Experiments 67
5.1 Calibration Results . 67

5.1.1 Displacement Calibration . 67
5.1.2 Force Calibration . 67

5.2 Testing of Flexinol . 67
5.2.1 Test Software . 70
5.2.2 Fixation Test . 70
5.2.3 Degeneration Test . 74
5.2.4 Flexinol Antagonist . 77
5.2.5 Spring Antagonist . 82
5.2.6 PWM-Control . 83
5.2.7 Summary . 86

5.3 Humanoid Finger Design . 87
5.3.1 Joints . 87
5.3.2 Tendons . 88
5.3.3 Friction . 88

5.4 Humanoid Finger Application . 88
5.4.1 Mechanics . 88
5.4.2 Electronics . 90
5.4.3 Software . 91

6 Regulation 93
6.1 Finger Regulation . 93
6.2 PWM-Controlled . 93

6.2.1 Transformation Curve . 93
6.2.2 Hysteresis . 93
6.2.3 Delay . 95

6.3 Regulation Models by Other Authors . 95
6.4 Own Regulation Experiments . 96
6.5 Summary . 96

VI

7 Future Work 99
7.1 Flexinol Testing . 99
7.2 Regulation . 99
7.3 Developed Finger . 99
7.4 Electronics . 100

8 Conclusion 101

Bibliography 107

A Code attachment 109
A.1 Software for Test Frame Control and Measurement . 109
A.2 Software for Web Surveillance of Test Frame . 118
A.3 Microcontroller Program for PWM-Control . 122
A.4 Microcontroller Program for Finger Control . 132
A.5 Computer Interface Program . 145
A.6 Interface for Microsoft Robotics Studio . 152
A.7 Matlab Scripts for Data Analysis . 155

A.7.1 Help Scripts . 159

VII

VIII

Chapter 1

Introduction

Over the last decades, robotic technology has entered more and more areas in industry and the every
day lives of humans. Robots are programmed to do complex tasks which often involve some kind of
interaction with the environment. In industrial applications, a robot may be only an arm that performs
a special task, or it could also be equipped with wheels that would allow it to move freely in a local
environment. In such cases, the hand of the robot would often be a tool that is specially designed for a
given task.

However, robots that are designed to interact with humans in a physical way need human-like hands.
Of course a robot could interact with humans using a stick or some other tool, but if the contact is
supposed to be interpreted as human-like, hands are necessary. In health care, a robot could be a
valuable assistant to a human worker, performing heavy lifts and other routine work that does not need
to be done by humans alone. In such settings, a robot as adaptable and flexible as humans would be
preferred, but this is still an Utopian setting. The physical adaptability of humans - our ability to use
different tools to perform tasks, makes us superior to other animals. Our hands allow us to perform
trivial tasks such as gripping around an unknown object while blindfolded, or to hammer in a nail. Of
course, these examples depend on a well functioning regulation mechanism - our brain.

1.1 Humanoid Hands

As already mentioned, a robot that is designed to interact with humans in a human-like fashion will often
need hands. Robots that perform tasks in a human-like way are referred to as humanoid. Analog is a
robot hand called humanoid when its design and motion is based on the principles of the human hand.

Principally, there seems to be two main directions in todays research in the field of humanoid hands.
The first direction has its main focus on the development of artificial hands for prosthetic applications
[1, 2, 3]. These works often have criterias such as light weight, easy control, anatomical design, and
in some cases, esthetics. The other branch of researchers focus more on robotic applications such as
humanoid robots [4, 5, 6, 7, 8, 9, 10]. These hands have different design criterias depending on the target
robot platform, are in general more complex, and possess more advanced control mechanisms than the
prosthesis. Moreover, these two branches also seem to have a lot in common, such as the never ending
need for adaptability. The ability of the human hand to adapt its grasp to unknown shapes and surfaces
is wanted in as good as all hand designs, but is not an easy task to resolve.

One state of the art humanoid robot hand is the Shadow Hand C5 [7] from The Shadow Robot
Company (www.shadowrobot.com). This is a commercially developed hand and as a result, no scientific
articles have been published. However, an earlier version of the hand is under research at the Bielefeld
University [11]. Figure 1.1 shows three pictures of the hand in different positions. In the lower part
of figure 1.1a, the actuators of the hand are shown. These are air muscles that provide light weight
actuation from the forearm of the application. The hand also has a grid of touch sensors on each fingertip
to provide good grasping feedback. A drawback with this design is the physical space needed for the air
muscles. As the pictures clearly show, a rather large forearm is needed to fit all the muscles.

1

www.shadowrobot.com

(a) Open hand (b) Half fist (c) Grasping an egg

Figure 1.1: Shadow Hand C5 [7]. The hand is actuated by 40 pneumatic artificial muscles and has 24 degrees
of freedom

1.2 Robot Hand Actuation

By looking at different humanoid robot hands, it soon becomes clear that this is a field under heavy
research. No standardized solutions have yet been pointed out regarding materials, actuators or design.
One design criteria that seems to be commonly used is the kinematic sketch of the hand, which often
is very similar to that of the human hand. However, the way that the hand is actuated varies greatly
between projects. Some hands are so-called underactuated hands [1, 3, 6, 12]. This branch of hands have
fewer actuators than degrees of freedom. A good example of such an underactuated hand is called the
TUAT/Karlsruhe Humanoid Hand and can be found in [6, 13, 14]. The hand can be seen in figure 1.2a,
and its special link mechanism is depicted in figure 1.2b. The mechanism consists of a number of link
plates hierarchically connected with rods. When the actuator is used, the link plates will align such that
the hand grasps around whatever object present in the hand. The TUAT/Karlsruhe Humanoid Hand
is an example of the similarities between prosthetic and robotic hands, as this hand is designed to be
suitable both for a humanoid service robot and for prosthetic purposes. The simple actuation of the
hand is its biggest advantage in a prosthetic setting. However, this simplicity also narrows the number
of robotic applications where it fits.

(a) A spherical grasp around a tennis ball (b) The hand is underactuated, using only one ac-
tuator. The link mechanism distributes the grasping
force over the different fingers

Figure 1.2: The TUAT/Karlsruhe Humanoid Hand [6]

2

Underactuated hands depend on passive mechanisms to be able to grasp around objects. In contrast
to this branch of hands are hands that have their actuators incorporated into each finger joint. However,
many hybrids are also available such as the two hands depicted in figure 1.3. Both of these hands are
rather large designs caused by the need for integrated motors and pumps.

(a) Multi-fingered Hand for Life-size Humanoid
Robots. The hand has 13 active joints and 4
passive joints, actuated with integrated servo
motors [4]

(b) Anthropomorphic Hand for a Mo-
bile Assistive Robot. The hand has 8
active joints and 3 passive joints, actu-
ated with miniature hydraulics [8]

Figure 1.3: State of the art humanoid hands

1.3 Flexinol - Artificial Muscle Fibers

A group of actuators not so commonly seen are artificial muscles fibers, such as Flexinol. Flexinol looks
like a steel wire and has the ability to contract when a current is passed through it. Compared to its size,
Flexinol is able to exert rather large forces and can be cut to any length. As the name artificial muscle
fiber states, Flexinol is very similar to human muscles regarding function. Although human muscles
consist of many muscle fibers, a muscle seen as a whole is very much like a Flexinol fiber. When the
muscle is contracted, it is shortened and thickened, just like a Flexinol wire.

Flexinol represents a kind of actuator that at first glance seems to fit perfect as actuator for a humanoid
robot hand. It is small in size, very powerful and a commercial product, available at a reasonable price.
Its biggest advantage is its size, that principally will allow very many Flexinol wires to be fitted inside
for example a robot forehand. Although Flexinol has many clear advantages, very little research interest
has been shown when it comes to using it as a robot actuator. One attempt to use Flexinol as actuator
in a robot hand is proposed in [15]. The authors present a working hand, but do not mention anything
regarding regulation or long term properties in the rather brief paper.

Other articles about general use of Flexinol have also been found, like [16, 17, 18, 19, 20, 21, 22].
Common for most of these articles is that difficulties are uncovered, but not often solved. Some of the
reported difficulties are hysteretic behaviour, high power dissipation and low strain rates. No information
has been found regarding the long term properties of Flexinol. This is highly relevant information if
Flexinol is to be used in a robotic application.

All in all, there are several questions that need to be answered in order to determine whether Flexinol
is suitable as a robot hand actuator:

Does Flexinol stand the long time use as a robot hand actuator?

– Are the properties of Flexinol changing over time?

Is it possible to regulate the contraction of Flexinol when used as actuator for a humanoid finger?

3

� Is it possible to improve the strain rate of Flexinol?

� Is it possible to use multiple Flexinol wires in parallel?

1.4 Thesis Overview

This thesis aims to answer the questions stated above. Chapter 2 contains background information about
Flexinol and other actuator technologies. A brief overview of the anatomy of the human hand is given in
addition to actuators and feedback sensors. Chapter 3 contains information about two of the tools used
in the practical work of the thesis and chapter 4 describes the methods that were developed in order to
answer the above questions. Chapter 5 contains an evaluation of the proposed methods and a discussion
around regulation is found in chapter 6. Suggestions to future work is given in chapter 7 and finally,
a conclusion is given in chapter 8. Following is a list over all the practical work completed during this
thesis.

� Long term testing of Flexinol

– Building test frame
– Molding weights
– Design of amplifier circuit for force measurements
– Calibration of force and displacment transducers
– Design of driver circuit for Flexinol wires
– Programming of measurement software

* Program for controlling Flexinol wires and collecting data
* Web application for remote surveillance and data browsing
* Matlab scripts for analyzing data

� PWM-control of Flexinol wire

– Design of microcontroller circuit with RS232 remote interface
– Programming microcontroller

* Command interpreter for RS232 commands
* Calibration algorithm
* Flexinol regulation algorithm

– Programming computer interface
* Text mode for debugging purposes
* Command mode for easy operation
* Continuous mode for data visualization

� Humanoid finger application

– 3D design of a humanoid finger with a torque free tendon routing scheme
– Printing in ABS-plastic and assembly of the finger
– Design, printing and assembly of radial displacement transducers
– Design, printing, assembly and calibration of force sensor brackets
– Design of micorcontroller circuit with sensor input and Flexinol driver
– Expansion of command set for microcontroller to include control and feedback of three wires
– Programming computer interface

* Reuse of computer interface from PWM-testing
* Interface for the Microsoft Robotics Studio framework

� Regulation methods

– Proportional regulation for PWM-control and finger joints
– Manual regulation of one wire using a high frequency pwm motor driver

4

1.5 Short Conclusion

This thesis shows that the use of Flexinol as actuator for a robotic finger is feasible. Flexinol has many
disadvantages that have to be overcome such as a limited life, hysteresis behaviour, limited strain rate
and degeneration of wires but it also has advantages. Flexinol exerts very large forces compared to its
own size and needs very little physical space in an application. Figure 1.4 shows a humanoid finger
actuated with Flexinol wires and a test frame for testing Flexinol wires. Both products were developed
during this thesis.

(a) Humanoid finger developed in this thesis. The finger is actuated with three
Flexinol artificial muscle fibers and controlled with a microcontroller

(b) A test frame was built to in-
vestigate the long term properties
of Flexinol

Figure 1.4: Two products of the thesis

5

6

Chapter 2

Background

In this chapter, the background theory for the thesis is presented. First, the human hand is briefly
presented to later be used as motivation for the development of a humanoid finger. Secondly, available
traditional actuators and actuators based on intelligent materials are presented and compared. Finally,
different feedback sensors suitable for displacement- and force measurements in robotic applications are
discussed.

2.1 Anatomy of The Human Hand

In this section some basic anatomical principles of the human hand are presented. The human hand
consists of 4 fingers and a thumb and is the main organ for physical interaction with the environment
surrounding the human body. A schematic of the bones in the human hand can be seen in figure 2.1.

Figure 2.1: Schematic drawing of a human hand. Carpals and Metacarpals form the wrist and palm of the hand
while Proximal, Intermediate and Distal phalanges form the fingers

2.1.1 Skeleton

In figure 2.1, the carpals are known as the wrist and the metacarpals as the palm. Proximal, intermediate
and distal phalanges form the three segments of the finger. The anatomy of the thumb and the wrist are

7

left out of this thesis as they are complex topics that are not needed for the presented work.

Metacarpal Phalanx

The metacarpal phalanx (yellow) is connected to the first finger segment (proximal phalanx) with a
joint called the metacarpophalangeal joint (MCP-joint). The MCP-joint is able to perform to types of
movement, flexion/extension and abduction/adduction. Flexion in this case means bending the finger
while extension means extending the finger. Abduction denotes the sideways motion of the finger away
from the midline of the hand. The opposite movement, adduction, means moving the finger back against
the midline of the hand.

Proximal Phalanx

The proximal phalanx (green) is connected to the metacarpal phalanx through the MCP-joint. On the
other side of the finger segment it is connected to the second finger segment (intermediate phalanx) with
a joint called the proximal interphalangeal joint (PIP-joint). The PIP-joint only has one axis of motion
and is therefore called a hinge joint. Flexion and extension of the PIP-joint means bending and stretching
the first finger joint.

Intermediate and Distal Phalanx

The intermediate (blue) and distal (red) phalanges are the middle and outer segments of the finger,
respectively. They are connected with the distal interphalangeal joint (DIP-joint) which is a hinge joint
like the PIP-joint.

2.1.2 Tendons and Muscles

The actuating mechanism of the human body is represented by muscles. However, the forces needed to
grip heavy objects are so large that the muscles needed cannot be fitted inside the human hand. Instead,
the muscles are placed in the forearm and the forces exerted by the muscles are transferred to the hand
using tendons. This type of muscle placement is called extrinsic [23]. The efficiency of a human muscle
is reported to be between 14% and 27% in the context of rowing and cycling [24].

Human Skeletal Muscles

A skeletal muscle is fastened to a bone in the human body to cause movement and force exertion [24].
Thus can it be seen as an actuator for the body. The muscle itself is a bundle of single, parallel muscle
fibers that are built up from muscle cells. A muscle cell consists of plates that are moved relative to each
other to generate motion. The cells cause the muscle fibers and the muscle to contract when it receives
a neural pulse, called an action potential. The frequency of the neural signal reception decides the
contraction rate and force of the muscle. The neural control signals for human skeletal muscle movement
can therefore be called pulse frequency modulated.

Finger Movement

The tendons and muscles responsible for flexion and extension of the finger are depicted in figure 2.2. The
most important parts for this thesis (marked with red) are the M. lumbricalis that flexes the MCP-joint,
the M. flexor digitorum superficialis, Tendo that flexes the PIP-joint, the M. flexor digitorum profundus,
Tendo that flexes the DIP-joint, and finally the M. extensor indicis, Tendo that extends the finger. In
figure 2.3, the insertion points of all the tendons in the hand can be observed.

2.1.3 Robotic Approach to the Human Hand

There are several aspects of the human hand that makes it very hard to imitate in a robotic application.
First of all, the human hand has a very complex kinematic model. The fingers alone possess 21 degrees
of freedom (DoF) according to [26]. In addition to the finger, movement of the palm includes 6 DoF,
27 for the whole hand. The movement of the palm itself is rarely seen in robotic hands, a solid palm is
often used instead. In addition to the high degree of freedom, the finger is also very sensitive to external

8

Figure 2.2: Tendon routing in the human finger [25]. The most important tendons and muscles are marked with
red

input. To imitate all the nerves on the surface of the finger is very complicated. Normally, a number of
touch sensors is seen instead.

2.2 Traditional Actuators

This section focuses on traditional actuators suitable for robotic applications.

2.2.1 Hydraulics

A widely used form of general actuation is hydraulic systems. A hydraulic system, which is depicted
in figure 2.4, typically consists of a pump, a reservoir, a valve and an actuator. The hydraulic pump
is responsible for creating pressure by forcing liquid (typically oil) from the reservoir into the hydraulic
system. By opening the valve, the pressurized liquid flows into the actuator, normally a hydraulic cylinder,
creating movement. Depending on the physical characteristics of the pump and the actuator, the actuator
exerts a force as illustrated in figure 2.5. In this example, the input energy is supplied by the pump,
whereas the output force is the actuation of the cylinder.

Hydraulic systems have been used commercially since the industrial revolution wherever great forces
have been needed. Traditionally, these systems have been quite large, not suitable for robotic applications.
However, with development in technology, small systems including a micropump, valves and actuators
now may be integrated into the palm of a robotic hand [28].

2.2.2 Pneumatics

In pneumatics, a pressurized gas is used to create actuation, typically by filling a cylinder with air.
In normal pneumatic systems a motion speed of up to 1m/s is obtained, but in high speed pneumatic
systems, speeds of 15m/s may be reached [29]. Figure 2.6 shows a pneumatic cylinder half full of air.
Pneumatic cylinders can be either two way, as shown in the figure, or one way. A two way cylinder is
actuated actively both ways with pressurized air in front of or behind the piston. A one way cylinder is
returned passively by a spring mechanism. By controlling the air flowing into the cylinder, the piston
can be actuated to either end of the cylinder. Pneumatic systems can be very simple, containing only a
compressor, valves and a cylinder. However, the efficiency of the compressor is low, causing an unwanted
loss of power in for example mobile applications.

Pneumatic Artificial Muscles (PAMs)

PAMs [30] are special variants of pneumatic actuators. Figure 2.7 depicts a PAM in three different states.
The muscle consists of a flexible membrane which can be filled with air. When the muscle is empty (a),

9

Figure 2.3: Insertion points on the human hand [25]. The blue dots show the three points essential for finger
flexion

the muscle is at its maximum length. When air is filled into the muscle, a pressure builds up causing the
volume to increase. As figure (b) shows, this decreases the length of the muscle. By further increase of
the pressure the muscle reaches its maximum volume in (c). At this point the contraction of the muscle
can be about 30% of its initial length. Many variants of PAMs are described in [30], but common for all
is that they are light weighted. However, the use of PAMs has not been very common due to problems
regarding short life of the membrane caused by mechanical stress and friction forces. This seems to have
changed over the last decade as for example the Shadow Hand C5 [7] is actuated by a high number of
PAMs. Accurate control of the muscle has been reported to be non-trivial.

2.2.3 Servo Motors

A servo motor (figure 2.8) is a closed system which gets input information and performs a motion
accordingly. The input is typically a position or a velocity, but may also be information from a force
sensor or any other feedback sensor. Servo motors come in a variety of sizes, making them suitable for
many different applications with different design considerations such as high force, small size or high
speed.

RC-Servo Motors

A subgroup of servo motors are servo motors for radio controlled (RC) applications. These motors
typically allow about 180-210 degrees of angular motion and are controlled with a pulse width modulated
(PWM) signal with fixed frequency and varying duty cycle. A controller for such a signal can easily
be built in hardware or software. RC-servos come in different sizes and types, an example of a servo
for robotic applications is given in figure 2.8. This servo has an idle wheel on the opposite side of the
drive wheel, making it suitable for stable assembly inside a joint. From leading manufacturer Hitec RCD
(www.hitecrcd.com), the smallest available RC-servo (HS-35HD) [31] is 1.85cm× 0.76cm× 1.54cm and

10

www.hitecrcd.com

Figure 2.4: Typical components in a hydraulic system [27]. A cylinder is a typical actuator in such systems

Figure 2.5: Force multiplier in a hydraulic system [27] is used to generate large forces

Figure 2.6: Two way pneumatic cylinder. Air can be pumped in on either side of the piston, causing motion

11

Figure 2.7: Pneumatic artificial muscle [30]. When air is pumped into the membrane, it is shortened, causing
motion

has a torque of 10Ncm. The biggest servo (HS-815BB) is 6.58cm× 3.00cm× 5.74cm and has a torque of
242Ncm.

The biggest advantage of servo motors is their very easy control. Typically, a RC-servo takes a PWM-
signal with a period of 20ms (50Hz). With a duty cycle of 1.5ms

20ms the servo is in its center position. By
increasing the duty cycle to 2ms

20ms or decreasing it to 1ms
20ms the servo is moving respectively +90◦ or −90◦.

Figure 2.8: Robot servo motor from Hitec [32]. The servo has an idle wheel for assembly inside for example a
robot joint

2.2.4 Stepper Motors

Stepper motors create angular motion, just as servo motors do. As the servo motor uses feedback to
control its position or speed, the stepper motor has no need for this. To eliminate the need for feedback,
the stepper motor divides one turn of the motor into a fixed number of steps, varying from model to
model. The simplest form of a stepper motor can be seen in figure 2.9. The drive shaft is fastened in
the toothed wheel which is surrounded by four electromagnets with toothed surfaces. In step 1, the top
magnet is turned on, making the teeth of the wheel align with this magnets teeth. The right magnet
is positioned with an angular offset from the top magnet with 1

4 of the angle between two teeth on the
wheel. When turning the top magnet off and the right magnet on (step 2), the teeth of the wheel will
align with the teeth of the right magnet, causing a motion with 1

4 of the tooth angle. Step 3 involves
turning the right magnet off and the bottom magnet on, causing another step of motion. In step 4,
the bottom magnet is turned off and the left magnet is turned on. The wheel has now turned 3

4 of the
tooth angle and the next time step 1 is enabled, the wheel has moved by 1 tooth angle. In this way, the

12

motion of the wheel can be controlled very freely. Other variants of step control is more common than
this example, involving more than one magnet turned on at a time.

Stepper motors can produce very high torques at low speeds. However, at higher speeds the motor
loses some of its torque. At lower speeds, the stepping of the motor can cause mechanical vibrations
which in some applications are unwanted. There is also a possibility that the motor can lose steps when
heavily loaded. This will cause the controller to believe that the motor has moved one step when it in
reality may have stood still. To prevent this, some models include an angular feedback from the motor
shaft.

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

Figure 2.9: Fundamental operation of a stepper motor. After four steps, the drive shaft has turned one tooth
clockwise

2.2.5 Electric Solenoids

Electric solenoid actuators are based on magnetic forces. An example of a commercial solenoid actuator
can be seen in figure 2.10. A coil is situated around the stem of the actuator. When alternating current
is passed through the coil, a magnetic field builds up, and the stem is attracted towards the center of
the coil. When the current stops, the stem is free and can be moved back either by active force or by a
return spring.

An advantage of solenoid actuators in comparison to pneumatic and hydraulic actuators is easy
installation and the fact that no reservoir of fluid or air is needed. A disadvantage of solenoids is that
they only have two positions when actuated, either on or off. As the stem is pulled into center of the
coil, the force increases, leading to a varying force exertion during the actuation period. By examining
datasheets [33, 34] from manufacturers Ledex (www.ledex.com) and Dialight BLP (www.blpcomp.com) it
seems that the maximum force of available actuators is about 650N. However, a solenoid that exerts such
a large force has the disadvantage that it weights over 2.2kg. The speed of the solenoid actuator depends
greatly on the force it is set to exert. When unloaded, an actuation can be performed in less than 50ms
[33, 34] in most cases. When operated, heat is dissipated in the solenoid which modifies the characteristics
of it. Typically, the speed of the actuator stroke and the maximum force is at their maximum when the
duty cycle of the solenoid is low, meaning the actuator gets to cool down between each actuation.

2.3 Intelligent Materials used as Actuators

In this section, several different actuators, based on intelligent materials, are presented. Intelligent
materials used as actuators are subject for research and not yet commonly seen in real life applications.
Common for most of these technologies is that they often have at least one big drawback, making them
non-trivial in use. This section gives a presentation of different actuators and references to research
performed in the area.

2.3.1 Shape Memory Alloys in General

Shape memory alloys (SMAs) are a group of alloys that possesses the shape memory effect (SME) [19].
This section focuses on the nickel-titanium (NiTi) alloy, which appears to be the most commonly used
alloy. The shape memory effect is a temperature dependent transformation between to phases, martensite

13

www.ledex.com
www.blpcomp.com

(a) Push type (b) Pull type

Figure 2.10: Ledex ® Electric Solenoid Actuator [33] Operation. Magnetic force is used to drive the stem into
or out of the housing

and austenite, which is illustrated in figure 2.11. The martensite phase is also known as the cold phase of
the material, normally occurring at room temperature. Although this phase may appear as the original
phase of the material, it is really the phase in which the material is deformed. This is according to
the internal crystalline structure of the material, which at this point is stretched (figure 2.11c). By
applying heat to the material (figure 2.12a), a transformation from martensite to austenite starts at the
temperature Astart. Further heating of the material leads to a straightening of the crystalline structure
until the temperature Afinish is reached. The material is now in its austenite phase, with its crystalline
structure in its original state (figure 2.11a). When cooling the material, the transformation from austenite
back to the martensite phase starts at temperature Mstart and ends at temperature Mfinish (figure 2.11b).
Cooling of the material alone does not make the material go back to its martensite shape, stress also
has to be applied to the material to stretch the internal crystalline structure (figure 2.11c). Figure 2.12b
shows the same transformation curve as figure 2.12a, but also has stress as a parameter. As can be
seen, applying stress to the SMA-material leads to a shifting of the transformation curve. Higher stress
means that a higher temperature is needed to reach the austenite phase, and vice versa is the martensite
phase reached at a higher temperature than when no stress is applied. A hysteresis behaviour can also
be observed between the heating and cooling phase in both cases. More on hysteretic behaviour can be
found in [16].

Figure 2.11: Cycle of the Shape Memory Effect [35]. The grid symbolizes the atomic crystalline structure of the
material

14

(a) Temperature hysteresis (b) Temperature hysteresis and stress

Figure 2.12: Transformation curve of shape memory alloys [36, 37]

2.3.2 Flexinol

Flexinol is the trade name of a SMA NiTi actuator wire, produced by Dynalloy, Inc. (www.dynalloy.com).
Actuator wires are often referred to as artificial muscle fibers because of their similarity to anatomical
muscle fibers.

Diameter [mm] Res [Ω/cm] Force [N] Current [mA] Toff (70◦C) Toff (90◦C) Stretch [N]
0.0254 17.72 0.07 20 0.1 0.06 0.07
0.0381 8.27 0.17 30 0.25 0.09 -
0.0508 4.72 0.34 50 0.3 0.1 0.34
0.0762 1.97 0.78 100 0.5 0.2 0.78
0.1016 1.18 1.47 180 0.8 0.4 1.47
0.127 0.71 2.26 250 1.6 0.9 2.26
0.1524 0.51 3.24 400 2 1.2 3.24
0.2032 0.31 5.79 610 3.5 2.2 5.79
0.254 0.20 9.12 1000 5.5 3.5 9.12
0.3048 0.13 12.26 1750 8 6 -
0.381 0.08 19.61 2750 13 10 -
0.508 0.06 34.93 4000 17 14 -

Table 2.1: Technical and electrical characteristics of Flexinol artificial muscle fibers given by the manufacturer
[37]

Physical Properties

Flexinol comes in many different diameters, the first column of table 2.1 shows all available sizes. Two
versions of Flexinol with different transformation curves are available, one with Astart = 70◦C and another
with Astart = 90◦C. The first wire has the advantage that it needs a smaller increase in temperature to
contract. This is reflected by a lower power consumption. However, the lower temperature of the wire
makes the relative temperature difference between the wire and the surrounding environment smaller.
This again leads to a slower cooling of the wire below the Mstart temperature (by a factor of 1.3-3.0
according to [37]).

According to the technical specifications for Flexinol [37], a contraction of ca 4.5% can be expected
upon heating of the wires. In figure 2.13, the transformation curve for Flexinol (Afinish = 90◦C) is
depicted. When heated, the martensite to austenite transformation (contraction) begins around 70◦C
(Astart) and ends around 110◦C (Afinish). When cooled, the austenite to martensite transformation
starts at around 100◦C (Mstart) and ends around 40◦C (Mfinish). These transformation temperatures
make the wires suitable for most real life applications, except for those concerning too high temperatures
(cooling of the wire is slowed down or completely prevented). Heating of the wire is normally done by
passing a current through it (joule heating), but any method that makes the wire reach a temperature
of Afinish, without damaging it, can be used.

Table 2.1 also shows some technical data from [37] that has to be taken into account when working

15

www.dynalloy.com

Figure 2.13: Transformation curve of Flexinol [37]. Relatively large changes in strain are observed between 85◦C
and 95◦C

with Flexinol. The first column of table 2.1 contains the different wire diameters. The diameter of the
wire determines its resistance and maximal pull force, found in column 2 and 3. A Flexinol wire has a
specified resistance according to the length and diameter of it. The specified current in the table is the
current needed to heat the wire above its transition temperature in one second. More about the time
response of Flexinol can be found in [20]. The voltage U , needed to create such a current can easily be
calculated using Ohm’s law, U = RI, where R is the resistance of the wire, measured or calculated from
its length, and where I is the wanted current. Generally, resistive materials have an increase in resistance
when heated. This does not apply to Flexinol in the same way due to the fact that the shape of the wire
changes as a function of temperature. The volume of the wire is constant at all times, leading to a larger
diameter and smaller length in the austenite phase compared to in the martensite phase. The formula for
a materials resistance R is given as R = ρ·l

A , where ρ is the specific electrical resistivity of the material, l
is the length of the material and A is the cross-sectional area of the material. From the formula it is clear
that by shortening and thickening the wire, the resistance is decreased. This assumption holds because
the increase in ρ caused by temperature is negligible compared to the decrease in resistance caused by
deformation.

The pull force found in column 3 of table 2.1 is the maximum guaranteed pull force reported by the
manufacturer. This means, that by exceeding the maximum pull force, a stable contraction rate over
time cannot be guaranteed. This should specially be taken in concern when designing the mechanical
parts of a system. An overloaded wire will most likely cause the need for a replacement - a drawback in
most applications.

As already mentioned, the current given in column 4 is the amount needed to contract the wire in
one second, surrounded by air at room temperature. Of course, a smaller current than specified in the
table can be used. This leads to a slower contraction but also to a higher power consumption caused by
the increase in time that the warm material is exposed to its surrounding air. From the manufacturer
of Flexinol, it is reported that any current waveform can be used to heat the wires. This makes the
wires suitable for embedded solutions, using for example a widely common PWM module to control
the contraction speed. Column 5 and 6 in table 2.1 show the cooling time for Flexinol wires with
Astart = 70◦C and Astart = 90◦C surrounded by air at room temperature. The differences in cooling
time solely depend on the surface to volume ratio of the wires. The surface area of the wire has a linear
growth when written as function of the diameter (A = π ·D). In comparison, the volume of the wire has
a quadratic growth (V = π · (D/2)2) and as a result, doubling the wire diameter results in more than
a doubling of the cooling time. In applications where great force is needed, faster cooling times may be
achieved by coupling multiple wires in parallel. This solution depends on that multiple Flexinol wires are
able to work together in parallel and has the disadvantage that more space is needed. In [21], a design
for a Flexinol bundle is proposed (depicted in figure 2.14).

To shorten the cooling time, a number of different actions can be taken as shown in table 2.2. The
improvement ratios in the table are given in the technical specifications for Flexinol [37]. Another cooling
technique is discussed in [38].

The rightmost column in table 2.1 shows the force that is recommended to stretch a wire that has

16

(a) Crimping of the wires to the end plates (b) End plate for parallel wires. The number of
electrical parallel connected wires can be used to
control the electrical operating point of the wires

Figure 2.14: A SMA Bundle Actuator [21]. By using many parallel wires, very large forces can be exerted

Method Improvement
Still air 1:1
Increasing stress 1.2:1
Using higher temperature wire 2:1
Using solid heat sink materials 2:1
Forced air 4:1
Heat conductive grease 10:1
Oil immersion 25:1
Water with glycol 100:1

Table 2.2: Cooling techniques [37]. The improvement is the increase in cooling rate when the corresponding
cooling technique is applied

17

been contracted. The numbers are provided by the manufacturers of Flexinol.
In figure 2.15a, a drive circuit schematic for a Flexinol wire can be seen. The current flowing through

the wire is controlled by the power MOSFET, directly connected to a power supply. A precision resistor
connected between the wire and ground is used for current measurements. The resistor should be small
enough to build up only a minimal voltage, relative to the drive voltage of the wire. The use of a pMOS
transistor may seem strange because a nMOS normally has better driving characteristics. However, for
the small signal driver it is desirable with a positive control signal for safety reasons. An undriven or
uninitialized control signal should not cause a wire contraction or a current flow as this could be dangerous
in for example a robot application that interacts with humans.

(a) Normal driver circuit. Charging of the
transistor may draw currents ≥ 20mA

(b) Small signal driver circuit. Suitable in for exam-
ple microcontroller applications

Figure 2.15: Circuits for driving Flexinol wires (blue)

Precautions

The contraction speed of the wire is reported to be proportional to the current used to heat it. However,
concern should be taken, not to overheat or overload the wire. A too high temperature or a too high
stress will cause permanent damage to the wire, reducing its ability to contract [37]. The manufacturer
has not reported any detailed specifications other than a general warning. Stretching of the material is
normally done using a spring or a dead weight. Although the strain percentage of Flexinol is reported
to be maximal 5%, the maximal strain percentage of the NiTi alloy is 8% [39]. In practice, this means
that from its austenite phase, the wire can be stretched 8% without causing any damage to its crystalline
structure. By violating this limit, permanent damage is done to the wire, decreasing its maximum strain
rate.

Control

In many applications, it is desirable to control the contraction of the wire somewhere between no con-
traction and maximum contraction. As figure 2.12b shows, the transformation curve shifts according to
applied stress, making such a control of the contraction rate non-trivial. Theoretically this could be done
by measuring the current passing through the wire, as mentioned above. However, no research has been
found confirming this assumption.

In [17], a method for controlling the degree of contraction is proposed. The authors heat and cool the
Flexinol wire with the use of Peltier elements. Peltier elements are electrically driven heaters and coolers.
When passing a current through the element, a temperature difference builds up between the warm and
cold side of the element. By applying a heat sink to the cold side, high temperatures may be built up
on the warm side of the element. By reversing the current, the warm side becomes cold and vice versa
[40]. The authors use several elements to heat the different segments of a Flexinol wire, as illustrated in
figure 2.16a. Every single Peltier element is controlled in a binary manner, set to either heat or cool its
corresponding wire segment. In this way, by deciding how many Peltier elements that cool the wire and

18

how many that heat the wire, the degree of contraction of the wire can be controlled. The assembly of
Peltier elements on a Flexinol wire is depicted in figure 2.16b.

By looking at commercial Peltier elements [41, 42], it can be concluded that heating and cooling
requires more power than normal joule heating does when controlling a Flexinol wire. What has to
be taken into consideration when applying Peltier elements to an application is the increase in system
complexity. The biggest disadvantage by introducing Peltier elements to control Flexinol wires, is the
increased physical space needed for each wire. By increasing the space need for an application, the biggest
advantage of Flexinol, its weight to force ratio, is removed.

(a) Segmentation of the wire. By reg-
ulating each segment to a hot or cold
state, the total amount of contraction
can be controlled

(b) Assembly of a Peltier element on a Flexinol wire. The result is
a large increase in physical size

Figure 2.16: Binary control of segmented Flexinol wire [17]

Movement

One drawback of Flexinol wires is their limited strain rate. Under normal conditions, a strain rate of
4.5% can be expected, which in many applications means that very long wires have to been used in order
to generate the needed amount of movement. The most elegant and easy way to use Flexinol is to connect
one wire that generates exact the amount of desired force and movement. In many real life application,
this cannot be expected due to space limitations and force needs. Therefore, different mechanical gear
mechanisms have been proposed to overcome this problem. The gear mechanisms shown in figure 2.17
are from the makers of Flexinol [37]. Figure 2.17a shows an angle pull of a Flexinol wire (blue line), where
the displacement ratio is given by the formula δd

δs = 1
sin(α) . Here, δd is the contraction of the wire and δs

is the output movement of the gear. The formula shows that a decrease of the angle α leads to a higher
ratio, the ratio is in other words variable over the working range of the gear. The force transmission is
also affected by the gear and can be written as Fs = Fd · cos(γ), where Fs is the output force of the gear
and Fd is the force generated by Flexinol. As expected, an increase in stroke length leads to a decrease
in force. Figure 2.17b shows a second gear variant which makes use of a lever mechanism. The lever
(red bar) has a defined pivot point L1/L2 from one end. The displacement ratio of the gear is linearly
dependent on the relationship between L1 and L2 and can be written as δd

δs = L1
L2 . The force ratio is

inverse of the displacement ratio and is written as Fs = Fd·L1
L2 . Figure 2.17c shows a radial pull which

is similar to the anatomical principals of tendon fastening in the human body. The displacement of the
gear is written as δd

δs = r1
r2

and the output force as Fs = Fd · cos(α).
Another gear mechanism is reported in [22] and can be seen in figure 2.18 and 2.19. The author

introduces a special routing scheme in a pattern around multiple gear plates (figure 2.18b and 2.19a) and
makes use of the angle pull from figure 2.17a. A loss of force due to friction and deformation is observed,
but in exchange the author is able to get a strain rate of 18%. However, the size of the gear makes the
application gigantic compared to a single Flexinol wire.

Commercial Applications

Although Flexinol and similar products have been available on the market for several years, it does not
seem like a particular brand of applications have been pointed out as very suitable. Not many examples

19

(a) Angle pull (b) Lever (c) Radial pull

Figure 2.17: Gear mechanisms for Flexinol [37]. The gears result in larger strains and lower forces

(a) Gear plates are pulled against each other (b) Gear assembly. The number of gear plates
decides the strain rate

Figure 2.18: SMA actuator with high strain [22]. Proposition unfortunately results in a large increase in physical
size

(a) Wire routing schematic. The wires are routed
in a diagonal pattern around the gear structure

(b) Top view and side view of the gear. The rout-
ing tracks can be seen on the top of the gear plate

Figure 2.19: SMA actuator with high strain [22]

20

have been found on commercial applications that use Flexinol, and the ones found may appear to be
produced by Dynalloy, Inc. An example for one of these products is the ElectrostemTM air valve [43].
The air valve has been made to give a practical example of the possibilities of Flexinol. The rather simple
design of the air valve can be seen in figure 2.20.

Figure 2.20: The Flexinol ElectrostemTM air valve [43]. The valve uses the thermal properties of Flexinol to
regulate air flow

The valve is said to be able to proportionally control the air flowing through it. The valve itself is
a standard car tyre valve (Schrader valve) which is controlled by its internal stem cap as seen in figure
2.21. As figure 2.20 shows, the Flexinol wire is fastened internally on the stem cap of the ElectrostemTM

valve. When contracting the wire, the valve opens and air flows through it. This operation itself is
not very special compared to other electrically driven air valves except for the small size of the valve.
However, as air flows through the valve, one of the special characteristics of Flexinol is revealed. The
air flow cools the Flexinol wire down, working against the Joule heating of the wire. With an increasing
pressure difference between the inside and the outside of the valve, the amount of air flowing through the
valve also increases. The wire is further cooled causing the valve to decrease the air flow until a balance
between heating and cooling of the wire stabilizes.

The wire needs about 750mA to operate, but if a higher air flow is wanted, the current may be
increased. However, if the current is increased and the airflow suddenly stops, the wire and the valve
could very fast overheat causing permanent damage. The danger of overheating is generally a reoccurring
challenge when using Flexinol, and should always be taken into concern when designing applications.

Non-Commercial Applications

The small six-legged robot bug Stiquito can be found in [44, 45]. The robot bug is able to walk 10
centimeters per minute and carry a load of 50g. It uses Flexinol wires of 100µm to move its legs. Other
scientific applications are presented in [46, 47].

(a) Schrader
valve closed

(b) Schrader
valve open

Figure 2.21: Schrader valve operation which can be handled by a Flexinol wire

21

2.3.3 Electroactive Polymers

Electroactive polymers (EAP) are a group of polymer materials that change their shape as a result of an
applied voltage [48]. Electroactive polymers can be divided into two groups, whereas the first group are
electroactive polymers that can be operated in a dry environment. The other group consists of polymers
that need to be wet in order to function. Common for all EAP-materials is that large strain rates can
be expected when compared to for example shape memory alloys. However, the exerted force is much
lower than that of SMAs - one of the biggest drawbacks of EAPs. Examples of EAP applications can be
found in [49, 50, 51, 52, 53, 54]. Figure 2.22 and 2.23 show two underwater applications actuated with
fins built from EAP materials.

Figure 2.22: Underwater micro robot that is actuated with a ICPF (Ionic conducting polymer film) fin [55].

(a) Deformation mechanics of IPMC (Ionic
polymer-metal composite) [50]. When a voltage
is applied, the water in the material moves to one
side, causing a bending of the material.

(b) A fin construction for a Rajiform Swimming
Robot [50]. EAP technologies that need a wet en-
vironment are well suited for underwater applica-
tions.

Figure 2.23: EAP technology

2.4 Actuator Comparison

In this section a comparison between the mentioned actuators is done. Table 2.3 shows a summary of the
results. As more and more manufacturers enter the market, it gets harder and harder to get a general
view of the available products. In many applications it is not easy to decide what actuator technology

22

to use, as many technologies share some of their properties. A deep analysis of the actual actuator need
is therefore crucial to make a good decision.

Flexinol and electroactive polymers differ from the other actuators in being very small in size and in
being non-mature technologies. Flexinol is able to exert great forces and has a high power to weight ratio
[56], but suffers from small strain rates, that can be compensated with gears. Electroactive polymers
can be said to have opposite properties with large strain rates but only exert small forces. Electroactive
polymers in some cases need drive voltages of ≥ 1000V.

Hydraulics have been used for a long time and a wide number of parts in different sizes are therefore
available. Lately, very small systems have also been developed. Tremendous forces can be achieved using
hydraulics, at the cost of heavy systems. As a result of technology development, pneumatics are more
and more used in robotics in the form of PAMs. These systems are in general lighter than hydraulic
systems, but the exerted forces are lower when compared against the system weight.

Radial movement is often achieved by RC servos or stepper motors. For example are RC servos ideal
for actuating a joint with a given degree of movement, while a stepper motor would better be fitted in
an application driving for example a multi-turn wheel. Both technologies seem to create about the same
amount of torque, but stepper motors have the disadvantage that they lose power as the motor speed
increases. On the other hand, RC servos tend to be rather slow compared to stepper motors, caused by
their internal gears. Stepper motors normally do not need gears.

Solenoids are normally used to operate valves, but may also be used in robotic applications. However,
as only to positions are available when actuating, the number of suitable applications are rather low.

Actuator Motion Force Size Res. Control Strain Ref
Flexinol
(SMA)

Linear 40N Small high Non-trivial 4.5% [37]

Electroactive
polymers

Linear Weak Small high Non-trivial ≤ 120% [35]

Hydraulics Linear Strong Med/Large high Controller - [27, 28]
Pneumatics Linear Medium Med/Large On/Off Controller - [29]
PAM Linear Medium Medium high Controller 30% [30]
RC Servo
motors

Radial ca 250Ncm Medium ca 1◦ PWM ±90◦ [31]

Stepper mo-
tors

Radial ca 300Ncm Medium ca 0.5◦ Controller - [57]

Electric
Solenoids

Linear 150N Medium On/Off Binary - [33]

Table 2.3: Comparison of different actuators and some of their properties

2.4.1 Power to Weight Ratio

Figure 2.24 shows the power-to-weight ratio [58] of the above mentioned actuator technologies. Values
for SMAs, hydraulics, pneumatics and DC-motors were found in [35, 59, 60]. Values for EAP actuators
are based on numbers found in [61, 62]. For electronic solenoids, no exact numbers were found. The
values in the figure is therefore based on one of the smallest and one of the largest solenoids from Ledex
[63, 64]. To calculate the effect, an assumption was made that the actuation time for the solenoid is one
second which is considered a reasonable actuating time in robotic applications.

The actuation time that is used to calculate the effect is a factor that has to be considered when
comparing the power-to-weight ratio of all technologies. Lately, very small DC-motors and hydraulics
have become available. This comparison does not include such actuators.

2.5 Feedback Sensors

This section describes different types of feedback sensors suitable in a humanoid robot finger. Two main
types are mentioned, sensors for displacement measurements and sensors for force measurements.

23

Figure 2.24: Power-to-weight ratio of different actuator technologies [35, 59, 60, 61, 62, 63, 64]

2.5.1 Displacement Transducers

In robotic applications, it is often desirable to know how much mechanical parts have been moved. Such
tasks are often solved with a displacement transducer.

Linear Variable Differential Transformers (LVDT)

A LVDT is in general a simple construction consisting of three coils and a sliding magnetic core. Figure
2.25 shows a schematic and a layout view of a LVDT. The single red coil is driven with a fixed frequency
and fixed amplitude AC signal. The two secondary coils (green and blue) are connected in opposite
directions so that when the metal core is in the center position, the induced currents from the coils cancel
each other. However, by moving the metal core away from the center position, a difference in the two
signals is measured according to the position of the core. By looking at the phase of the differential signal
according to the signal present at the center coil, it can be determined whether the metal core is moved
to the left or to the right of the center position.

The use of electromagnetism makes mechanical contact between the metal core and the coils unnec-
essary. This has two great advantages. This means that very little wearing can be observed, causing a
long life. It also leads to clean data and almost infinite resolution. On the other hand, the use of LVDTs
requires a fixed frequency for the center coil. If a dc output is wanted, some simple signal processing
also has to be done externally. Some products like [65] have internal signal processing and frequency
generation and only need DC power to be operated.

Resistive (potentiometric) Displacement Transducers

Compared to LVDTs, resistive displacement transducers are in general cheaper. They consist of a slider
that is moved back and forth over the surface of a resistive material as figure 2.26 shows. The resistive
material acts like a voltage divider, causing the output voltage to be proportional to the position of the
slider. Resistive displacement transducers are widely used, but because of the contact between the sliding
mechanism and the resistive material, their lifetime is in general shorter than that of a LVDT. A great
advantage of resistive displacement transducers is the simple three wire connection. Any common supply
voltage can be used as excitation and they can therefore easily be fitted into most applications.

24

(a) Schematic view. The blue
and green coils are connected
symmetrically

(b) Layout view. The red coil
induces a magnetic field that is
transferred to the other coils via
the iron core

Figure 2.25: Principal of LVDT [66]

Figure 2.26: Resistive displacement transducer. The slider is moved over a resistive material that is functioning
as a voltage divider

Merlin Elastic Stretch Sensor

The stretch sensor is made from a smart material which increases its resistance when it is stretched. The
sensor is depicted in figure 2.27 and looks and behaves just like a normal rubber cord. However, the
rubber mix is a conducting material and its resistance can easily be measured by fastening a terminal in
both ends. A great advantage of the sensor is its limited need for space.

2.5.2 Force Transducers

In robotic applications it is often desirable to measure mechanical forces. This may for example be to
restrict the gripping force of a robot hand carrying a glass. In other applications the sensor would only
need to report whether a contact force is present.

Strain Gauge Load Cell

A strain gauge is a long conducting wire, arranged in a pattern like the one seen in figure 2.28. The wire
is mounted on a flexible base. When the strain gauge is bent in a vertical direction, only a small change
to the geometry of the wire occurs. However, if the strain gauge is bent in a horizontal direction, the
majority of the wire length will be stretched. The stretching of the material means that it gets longer and
thinner. According to the formulas for the resistance of a material, this leads to an increase of resistance
in the strain gauge.

By placing a strain gauge on the surface of a material, the strain of the material can be measured
as a change in the strain gauge resistance. The strain of the material is caused by an external force.
Therefore, by placing a strain gauge on a material with a stiffness proportioned to the expected force

25

Figure 2.27: The elastic stretch sensor from Merlin increases its resistance when it is stretched

Figure 2.28: Strain gauge. The zig-zag pattern makes the wire change its resistivity when stretched in a horizontal
direction

range, the exerted force can be measured as a change in strain. The material that the small strain gauge
is fastened on is in general much larger than the strain gauge itself. To measure the small changes in
strain gauge resistance, a Wheatstone bridge is often used. Figure 2.29 depicts four strain gauges on
the surface of a material, connected as a Wheatstone full-bridge. As the figure shows, an increase of
resistance in R2 and R4 occurs when the material is bent. This unbalances the two voltage dividers of
the Wheatstone bridge and causes a voltage difference between their two center nodes. The force causing
a material strain is represented by this voltage.

Strain gauge load cells are specified with a maximum load and a sensitivity. The sensitivity of the
load cell is reported as mV/V. This denotes the amount of millivolts per excitation volt the output of
the Wheatstone bridge will be when the load cell is loaded to its maximum. For a load cell specified to
100N and 2mV/V, an excitation voltage of 1V would cause an output of 2mV when the cell is loaded
with 100N. In the same way, with an excitation voltage of 10V the output would be 20mV.

Because of these low voltages, the use of a Wheatstone bridge is required. The differential measurement
will cancel noise that is present on both channels. Also, if only one voltage divider would have been used,
the output voltage would be Vdd

2 ± 20mV . If a Vdd of 5V would be used, the output would therefore
be about 2.5V ±20mV . This would waste almost the hole measuring range of the data acquisition
unit. Instead, by introducing two balanced voltage dividers and measuring their difference, a much more
efficient use of the measuring range is achieved (0V ±20mV). Another great advantage of the Wheatstone
bridge is its ability to cancel temperature drifts. This is caused by the mirrored placement of resistors
like R2 and R4 in figure 2.29.

Interlink Force Sensing Resistor [67]

The Interlink Force Sensing Resistor (FSR) is not designed for accurate force measurements, but can
be used for indications. The FSR decreases its resistance as stress is applied to its polymer material.
This behaviour is known as the piezoresistive effect. Although the accuracy of the FSR is reported to be
rather poor, its physical size of ca 8mm · 1mm (figure 2.30) makes it ideal for robotic use. In contrast,
strain gauge load cells tend to be very large. A great advantage of the FSR is its high sensitivity. A
small change in pressure causes the resistance of the sensor to change with many hundred Ohm. This
eliminates the need for an amplifier.

26

Figure 2.29: Strain gauge connected as Wheatstone bridge. Very small changes in resistivity can be measured

Figure 2.30: Interlink Force Sensing Resistor [67]. Small changes in pressure result in large changes in resistivity

27

28

Chapter 3

Used Tools

In this chapter, three essential development tools are presented. First, the Atmel ATMega32 microcon-
troller is described. The ATMega32 will later be used to implement a control unit for a humanoid finger.
Secondly, the data acquisition unit for the later described test frame is described and finally, an overview
of the robotic software framework, Microsoft Robotics Studio, is given. An interface for Robotics Studio
will later be developed for a humanoid finger.

3.1 Atmel AVR Microcontrollers

The 8bit AVR microcontrollers from manufacturer Atmel (www.atmel.com) are a series of RISC-controllers
with high performance and low power consumption. They have a Harvard architecture (figure 3.1) and
can be operated at clock frequencies up to 20MHz. Code development, compiling and simulation can
be done in Atmels own AVR Studio, which also handles uploading the compiled microprogram to the
flash memory of the microcontroller. This can be done via the microcontrollers In System Programming
(ISP) interface, Jont Test Action Group (JTAG)interface or High Voltage Serial Programming (HVSP)
interface. This section focuses on the AVR ATMega32 device [68], but the information is also highly
relevant for other AVR devices as all of these are built upon the same AVR hardware platform.

The ATMega32 has a wide range of integrated functions for internal and external operations. This
is a presentation of the most important functions used in this thesis. Generally, all functions in the
microcontroller are controlled by setting bits in the corresponding control registers of the function.

3.1.1 I/O-Ports

The microcontroller has many different I/O-ports, the number depends on the chosen housing. All ports
can be used as general digital inputs or outputs and in addition most ports can be configured to perform
one or more other functions. The pinout of the ATMega32 in a PDIP-40 housing can be seen in figure
3.2. The pin names written within a parenthesis are the alternate functions of each pin.

When a port is used as a normal digital input or output pin, the direction of the signal has to be
configured. This is done by writing respectively a ’1’ or a ’0’ in the data direction register (DDR) of
the port. When used as input, an internal pull-up of the pin is done, making the use of external active
low signals convenient. The alternate functions of a port is configured through the control register of the
function. Some of these functions are described below.

3.1.2 Memory

The ATMega32 has 32kB of internal non-volatile flash memory for program code. Additionally, the
microcontroller has 2kB of SRAM used for data variables and 1kB of EEPROM for data storage. The
SRAM is volatile, meaning its state gets lost on a shutdown of the microcontroller. The EEPROM is
non-volatile and supports 100,000 write cycles, making it very suitable for storing device setup or medium
sized datasets.

29

www.atmel.com

Figure 3.1: Harvard architecture of ATMega32 [68] with separate memory and buses for data and program

Figure 3.2: Pinout of the ATMega32 microcontroller [68] in a PDIP-40 housing. Alternate port functions are
inside the parenthesis

30

3.1.3 Interrupts

Different asynchronous events may occur during the execution of a microprogram. Interrupts are used
to prevent the programmer from having to poll different status registers constantly, waiting for events to
happen. An interrupt can for example be caused by a level change on an external interrupt port, a counter
overflow or a complete reception of a serial data byte. The first 40 bytes of the program memory contains
20 interrupt vectors. For each vector a jump command tells the microcontroller where in the program
code the triggered interrupt is to be handled. If a microprogram runs when an interrupt is triggered, the
execution of the program is halted. Then the interrupt is handled according to the interrupt vector. The
handling should of course not take too long, or else the occurrence of other interrupts may be overseen.
When the handling of the interrupt is done, execution of the main program continues from where it was
halted.

3.1.4 Counters and Pulse Width Modulation (PWM)

Two 8bit counters and one 16bit counter are available on the microcontroller. In general, these consist
of a counter register, a prescaler, control register and compare registers. The prescaler divides the global
clock signal of the microcontroller with either 1, 8, 64, 256 or 1024, allowing different counter speeds.
The counters can be set to operate in three different modes. In normal mode, the counter starts counting
from 0 and counts upwards until the counter register overflows (8bit/16bit). The overflow will trigger an
interrupt if the corresponding bit is set in the Timer/Counter Interrupt Mask Register (TIMSK) of the
microcontroller.

The second mode is called Clear Timer on Compare Match (CTC) and does, as the name suggests, a
reset of the counter when a compare value is reached. As the counter is reset, an interrupt is triggered if
set up in the TIMSK-register. An output pin on the microcontroller can be set to toggle on each compare
match, creating a clock signal with programmable frequency. By correct setup of the CTC-mode, an
interrupt can be triggered on a regular basis and thus update for example a clock register. The frequency
of the counter (FCTC) is written as function of the system clock (FCPU), the prescaler (N) and the reset
compare value (OCR):

FCTC =
FCPU

N · (1 +OCR)

The third mode of the counter is the Pulse Width Modulation (PWM). This mode can again have
three different modes of operation, called Fast PWM, Phase correct PWM and Phase and Frequency
correct PWM. This section describes the Fast PWM mode.

Fundamentally, the PWM mode works a lot like the CTC-mode. First, a reset value is set for the
counter, deciding the frequency of the generated PWM-signal. In addition an output compare value is set.
When the counter counts from 0 to the reset value, it compares its value with the output compare value.
Depending on an inverting or non-inverting mode of operation, the output pin of the microcontroller
corresponding to the counter is toggled from 1 to 0 or from 0 to 1 when the counter value matches the
output compare value. In this way, by choosing an output compare value between 0 and the reset value
of the counter, the duty cycle of the PWM-signal is controlled. The frequency of the Fast PWM signal is
written as function of the system clock (FCPU), the prescaler (N) and the reset compare value (OCR):

FFastPWM =
FCPU

N · (1 +OCR)

Figure 3.3 illustrates the operation of the Fast PWM mode, where TCNTn is the counter register,
OCRnx/TOP is the reset compare value, and OCnx is the output pin for the PWM signal. OCnx and
OCnx represent respectively inverting and non-inverting mode of operation.

3.1.5 Universal Synchronous and Asynchronous Serial Receiver and Trans-
mitter (USART)

For serial communication with its surroundings, the ATMega32 contains an USART. This function unit
can be set up to send and/or receive data on the TX and RX pins of the microcontroller allowing it
to communicate with other microcontrollers, serial analog to digital converters, computers (with level
shifter like the MAX232 from maxim), GPS modules or any other device with an USART interface. The

31

Figure 3.3: Fast PWM mode (single slope) of ATMega32 [68]. The output is toggled each time the counter passes
the compare value

USART operates in a full duplex mode, supports 5, 6, 7, 8 or 9 data bits, 1 or 2 stop bits and odd, even
or no parity check and generation.

The USART can be set up to trigger an interrupt on arrival of a new data byte or on a complete trans-
mission of the current output data. By handling these interrupts correctly, the programming of buffers
for sending and receiving data can easily be implemented. The Baud rate of the USART can be written
as a function of the system clock (FCPU) and the Baud Rate Register (UBRR) of the microcontroller:

BAUD =
FCPU

16 · (1 + UBRR)

3.1.6 Analog to Digital Converter (ADC)

The ATMega32 has an Analog to Digital Converter (ADC) with 8 single ended channels and a resolution
of 10bit. The ADC uses a successive approximation which supports conversion times between 13 and
260µs. Only one conversion unit is available and the 8 single ended channels are therefore connected to
the ADC through an 8-channel analog multiplexer. In addition to single ended measurements, the three
first channels (ADC0, ADC1 and ADC2) can be used in combination with the rest of the channels to
perform differential voltage measurements.

3.1.7 Watchdog Timer

A watchdog timer is situated in the ATMega32 and is responsible for controlling that the microprogram
does not hang in an indefinite loop. The watchdog timer works a lot like the other counters on the
microcontroller, except for its wider range of prescaler values. When the watchdog timer reaches an
overflow, a reset of the microcontroller is performed. To prevent unwanted resets, the programmer has
to clear the watchdog timer regularly, before it reaches its maximum value. The watchdog timer can also
be used to perform a software reset of the ATMega32. This is the only way to do a proper reset of the
system without cutting the power supply lines.

3.1.8 Clock Source

The ATMega32 can be operated with different clock sources, making it fit to different applications. An
internal RC oscillator is able to generate a clock signal of 1, 2, 4 or 8MHz and is in many applications the
best choice because no external components are required. The internal RC oscillator is specified to give
a frequency within ±3% of the nominal frequency. By adjusting the calibration byte of the oscillator, a
frequency within ±1% is guaranteed. If an other frequency, a higher frequency or a higher accuracy is

32

needed, an external RC oscillator or an external crystal may be used. This may be the case in timing
critical applications. The last clock source option of the microcontroller is the operation with an external
clock signal. This option could for example be used in a system with a global clock signal and multiple
synchronous microcontrollers.

3.2 Keithley KUSB-3100

Figure 3.4: The Keithley KUSB-3100 has 12bit resolution and 50kS/s sample rate

The Keithley KUSB-3100 (figure 3.4) is a data acquisition (DAQ) unit with an USB interface. It
also comes with an application programming interface (API) for the Microsoft .NET Framework. The
DAQ unit has an internal 500V isolator barrier which protects the computer from external electrical
disturbance. Table 3.1 shows the technical specifications of the unit. The KUSB-3100 is divided into
several subsystems responsible for handling analog to digital conversion, digital to analog conversion,
digital input, digital output and timer operation. These subsystems are exposed through the API.

Property Value
Resolution 12Bit
Throughput 50kS/s
Analog input channels 8 Single ended
Analog output channels 2
Digital I/O channels 16
Counters/timers 1
Gain 1, 2, 4, 8
Connectivity Built in screw terminals

Table 3.1: Specifications of Keithley KUSB-3100 [69]

3.3 Microsoft Robotics Studio

In robotic applications, dealing with I/O is a very natural operation. This is the interface between
the robot and the real world. As robotic systems become more advanced, multi-threaded software is
a natural leap towards imitation of the parallel processing capabilities of the human brain. However,
the concurrency that multi-threaded systems possess also introduces some difficulties. Traditional I/O
systems normally have one connection to a control unit and multiple I/O channels. How would this be

33

handled in a concurrent system if one I/O channel is used to control a leg and another used to control
a hand? If the concurrent system has one thread for computation of leg movement and one for hand
movement, there is a possibility that these two threads will try to access the single hardware connection
simultaneously.

In a normal application, such settings will have to be avoided using software programming techniques
for multi-threading such as semaphores. This functionality is an integrated part of Robotics Studio which
aims to handle such settings hidden from the programmer of the leg and hand movement. This presumes
that the hardware process has been designed to handle concurrent requests properly. The following list
summarizes how Robotic Studio solves the challenge of I/O concurrency.

� Hardware is abstracted and wrapped in a Robotics Studio Service

� The hardware service can be reached from any other service

� The hardware can be polled via messages to the hardware service

– The message handler decides if concurrent message handling is allowed

– Robotics Studio queues requests if no concurrency is allowed

� Result

– The degree of allowed hardware concurrency is defined when writing the hardware service

– User does not need to worry about concurrent hardware request when writing services that
access the hardware service

3.3.1 Overview

Microsoft Robotics Studio is a free framework for robotic application on the Windows platform and was
released in December 2006. The idea behind Robotics Studio is to create an environment of concurrently
working services which communicate with each other through different types of messages. There are
two types of messages that can be sent between services. The first type is service operations, which are
requests for a certain action to be performed. Such an action can for example be a request to return
the current state of the service, a request to return a HTML-representation of the state, a request to
acquire data from hardware or simply a request to update values in the state of the service. This way of
system design, with independent modules, is also known as loosely coupled. The second message type is
notifications, which are sent from a service when a predefined event occurs.

3.3.2 Concurrency and Coordination Runtime (CCR)

The CCR is a programming model for Robotics Studio and can be said to be an abstraction from the
details considering multi threaded computation like semaphores, locks and critical sections. Behind
the scenes, it handles all the work that normally would be done by hand in a system of concurrently
working modules. Therefore, a service developer doesn’t have to worry about the execution order of other
cooperating services. The CCR itself is a dynamic linked library (dll) for .NET framework v2.0 or later,
which means it is available through all languages targeting the .NET Runtime.

3.3.3 Decentralized Software Services (DSS)

The DSS is built on top of the CCR and is an application model which builds on the REST model.
The principal of its operation is that a service is exposed to its environment by providing a state object.
Expansion of the REST model includes structured data manipulation, event notification and service
composition. DSS is built to support applications which are sewn together from multiple services, which
can run on different computers and communicate over a network.

The main component of DSS is services. A service can be seen as an object instance in traditional
object oriented programming. Figure 3.5 shows a graphical representation of a service component. The
service identifier is a unique URI address for the service, which all other services use to communicate with
it. The service is assigned this address when it is constructed. The service contract is a short description
of the behaviour of the service which enables the composition or reuse of a service with a given contract.

34

Figure 3.5: DSS service model [70]. All communication with the service is done via its main port and notification
port

The service state is representing the current state of the service. It can for example contain the
latest acquisition data from a hardware module, the settings for a robot test drive or any other stored
information. The state can be seen as the public domain of a service, defining what information that
can be retrieved and what information that can be modified. The service partner list contains all the
other services that the service is cooperating with through messages. In order to be able to talk to other
services, they are required to be defined in the service partners list.

The main port of the service is a FIFO data structure, which handles all received messages from other
services. Each service defines what type of messages it can handle on its main port, which forwards the
message to its corresponding service handler. The service handler handles the message and returns a
confirmation or, in the case of a data request, the requested data.

3.3.4 Visual Programming Language (VPL)

In contrast to conventional textual programming of DSS-services, Microsoft Robotics Studio also offers
the ability to do graphical programming with the Visual Programming Language (VPL). VPL is on one
hand meant for beginners, with lack of experience in textual programming. On the other hand, it can
also be used by experienced programmers to prototype, to define services and for code generation. VPL
programming is a description of the dataflow between services or service internal actions like calculations,
variable assignments or other functions. In Figure 3.6, one can see how data values, variables and
calculations are used to construct a dataflow which finally is sent to a text-to-speech service. This simple
program first initializes a variable called Test with the value 1. The value is then sent to the text-to-
speech service, which tells the user the actual value. A boolean comparison is then done between Test
and the value 10. If Test is unequal to 10, it is incremented by 1 and then sent to the speech service
again. This is repeated until the value of Test is 10 and then the text string “All done!” is sent to the
speech service before the program is terminated.

Figure 3.6: Microsoft Visual Programming Language (VPL) [70]. A tool for beginners and for rapid prototyping

35

36

Chapter 4

Own Methods

In this chapter, the methods developed during this thesis are described. First, the methods for testing
Flexinol wires are presented. This is to gain an insight in the physical capabilities of Flexinol, as described
in the thesis introduction. After this test, a humanoid finger design is developed, and finally the humanoid
finger is assembled with sensors and a control mechanism is developed. Figure 4.1 shows an overview
schematic of the developed methods.

Figure 4.1: Overview of the developed system. The test frame is used for long term testing, controlled through
a Keithley KUSB DAQ-unit. The self-developed finger model is controlled with a custom made microcontroller
program, communicating with the laboratory computer via RS232.

4.1 Testing of Flexinol

Research in the field of shape memory alloys has been ongoing for many years. Interesting when reading
articles is that it seems like very little work has been done regarding investigations on the physical
properties and the long-time properties of SMAs. Attempts to do intelligent regulation of SMAs have
been found in [22, 71, 72, 73, 74], but none of these papers actually use SMA wires as robot actuators.
Because of its commercial availability, Flexinol is chosen as the SMA actuator under test.

This section describes the different tests that are to be performed on the Flexinol wires. The mentioned
test frame is described in section 4.2.

4.1.1 Fixation Test

In the fixation test (figure 4.2a), the Flexinol wire is fixated inside the test frame. The wire is fastened
directly to the frame in the top, and in a strain gauge load cell in the bottom. When contracting the
wire, a force is exerted to the load cell and measured. In this way, it should be possible to determine the
maximum pull force of the wire, and how the contraction curve looks in this case. Another interesting

37

property to investigate is how the contraction changes over time. To be able to use Flexinol or similar
products in real life applications, enough knowledge should be available to perform a proper scaling of
the wires that act as a part of a bigger system.

4.1.2 Degeneration Test

This setup is designed to examine if a Flexinol wire suffers from degeneration when actuated continuously
over time. One setup will be done with a small load (figure 4.2b), and a second setup (figure 4.2c) will
be done with a load, slightly smaller than the maximal pull force of Flexinol [37]. The parameter to be
examined is the strain rate of the wire, which optimally should not change too much. A wire that changes
its working characteristics over time would in many applications lead to the need for a replacement of
the wire. This complicates both the application design and the service routines. In the article Low-mass
muscle actuators using electroactive polymers (EAP) [60], the author contends that shape memory alloys
have a life limit of 1000 cycles when actuated to maximal displacement. This should also be investigated.

The contraction rate is measured with two displacement transducers, located underneath the small
load and the big load as seen in figure 4.2b and 4.2c.

(a) Fixation.
Can Flexinol
stand this test,
and how large
forces will be
exerted?

(b) Long term
testing with a
small load applied

(c) Long term
testing with
a heavy load
applied

Figure 4.2: Test designs for Flexinol

4.1.3 Flexinol Antagonist

In this test, two Flexinol wires act together as antagonistic muscles (figure 4.3a). When one wire is
fully contracted (agonist), power is cut and cooling of the wire begins. Simultaneously, the second wire
(antagonist) contracts, causing a stretching of the first wire. By measuring the displacement and actuation
force over time, it can be examined if such an antagonistic use of two Flexinol wires causes degeneration.
With this setup it should also be investigated at what maximal frequency the antagonistic muscles can
be actuated.

The contraction rate of the degeneration tests is measured with normal linear displacement transduc-
ers. When testing antagonists, the center point of the generated motion is located in the middle of the
frame and is not easily measured with a linear displacement transducer. Instead, a radial displacement
transducer is fastened on the top of the frame. A thread is fastened in the connection point of the two
Flexinol wires, pulled over the radial displacement transducer and then fastened in a nut, working as a
dead weight to keep the thread straight.

38

A strain gauge load cell is used to measure the force of each contraction. The forces exerted to the
wires when one wire is turned off and the other on, are interesting because they show in what degree the
opposite forces of the wires are able to overload eachother.

4.1.4 Spring Antagonist

This test (figure 4.3b) is similar to the test in section 4.1.3, except for the nature of the antagonist. A
spring is used as a passive antagonist instead of the active Flexinol antagonist in section 4.1.3. The test
frame holds 100cm of Flexinol wire and with 4.5% strain rate, the spring antagonist will be stretched
about 4.5cm. It has to be taken into concern, that a certain force is needed to stretch the wire, and
therefore the spring should be preloaded. A preloading of the spring will of course be a force working
against the wire, but this is the only way to utilize the maximum strain rate of the wire.

The deflection and forces caused by the wire is measured in the same way as for the Flexinol antagonist,
described above.

(a) Flexinol wire
performing an ac-
tive antagonistic
movement

(b) Spring per-
forming passive
antagonistic
movement

Figure 4.3: Antagonistic test designs for Flexinol

4.1.5 PWM-controlled

As described in section 5.2, the results from the above mentioned tests revealed that the use of an
antagonistic Flexinol wire is possible but complicated. The PWM-controlled setup therefore uses a
spring antagonist, as described above. When controlling a finger, it is desirable to be able to control each
joint to any degree of flexion. To be able to do this, the Flexinol wire has to be contracted to different
points between no contraction and full contraction. With most actuators this is an easy task, but as the
degree of contraction for a Flexinol wire depends solely on the wire temperature and the stress of the
wire, this is a non-trivial task.

Some sort of regulation has to be used in order to control the wire. For the ease of design, the
regulation loop should have as few sensor inputs as possible. For a regulation of the wire contraction,
two variants will therefore be tested. The first variant uses sensor input from a deflection transducer to
control the wire contraction to a predefined set value. The second variant uses current measurements to
control the contraction. This variant may be difficult to get working, as the PWM-control signal also
causes the current to be pulse width modulated.

With these two tests, it will become clear if it is possible to control the wires as wanted. If the
methods are successful, they will also be used to control the humanoid finger.

39

4.2 Test Frame

In order to be able to measure different physical characteristics of Flexinol, a mechanical test frame is
built. The frame is assembled from aluminium parts and is high enough to hold 100cm of Flexinol wire,
and wide enough to hold 5 wires in parallel. The aluminium construction is very stiff and guarantees
minimal measurement errors due to mechanical deformation. To be able to measure the contraction rate
of the wires, additional vertical space was left inside the frame, leaving room for displacement transducers
and load cells at the end of the wires. A picture of the test frame is seen in figure 4.4.

Figure 4.4: Developed test frame. Two radial displacement transducers are seen in the top and to linear dis-
placement transducer are seen in the bottom. The frame holds 5 Flexinol wires in parallel

4.2.1 Electronics Design

The schematic of the test frame can be seen in figure 4.5. In general, the system can be divided into
four parts. Firstly, the control unit of the system is realized with a data acquisition (DAQ) unit from
manufacturer Keithley. The model is called Keithley KUSB3100 and has 8 analog inputs with 12bit
resolution (±10V), 8 digital output ports and other functions that are not relevant. The KUSB3100 has
an USB interface and comes with an API for the Microsoft .NET Framework. The DAQ unit controls the
contraction of the Flexinol wires in a binary fashion, using its digital outputs. The contraction signals
and force signals are then measured, using the analog inputs of the unit.

The second part of the system is the force measurement. The force signals from the load cells are in
the range of ±5mV and has to be amplified before the KUSB3100 can measure them with its measuring
range of ±10V . The third part of the system is measurement of deflection signals and the fourth part
is the driver circuit for the Flexinol wires. The different parts are described in detail in the succeeding
sections.

Force Measurements

As described in section 2.5.2, a strain gauge load cell is built up like a Wheatstone bridge (figure 2.29).
When a force is exerted to the load cell, a voltage in the range of ±5mV is built up between the two
outputs of the bridge. To amplify this signal before the KUSB3100 reads it, a differential amplifier is
used (figure 4.7). The output of the differential amplifier is given as

40

Figure 4.5: Electrical schematic of the test frame. Overview of the whole system with control unit, force mea-
surements, displacement measurements and Flexinol driving circuits

Figure 4.6: Load cell in use. The four connections points of the Wheatstone bridge are seen on the right side.
The loose wire is connected to a Flexinol wire

41

Vout =
R2
R1
· (Vin+ − Vin−)

in the special case when R1 = R3 and R2 = R4. The load cells in use (figure 4.6) are rather cheap units
that are specified to about 200N. The load cells are not specified with a given mV/V, but the maximal
output will be found when calibrating it. By measuring the mV output of the Wheatstone bridge and
expecting a maximum force of 30N, the gain factor is chosen to be ca 6800. This is done by setting
R1 = R3 = 120Ω and R2 = R4 = 820kΩ. An excitation voltage of 5V is regulated by a MAX603 from
MAXIM, supplying the Wheatstone bridge. An 8V power supply is used for the operational amplifier.
The choice of an 8V supply for the operational amplifier is to make the maximum output signal use a
large as possible part of the input range of the KUSB3100. The operational amplifier is an OPA2134
from Burr Brown and was chosen because of its low offset.

Figure 4.7: Force signal amplification circuit with potentiometer used for balancing of the load cell

Measurement of the load cells when unloaded revealed that these suffer from an offset. This results
in an bridge output of as much as 5mV when no load is applied to the load cell. The offset is amplified
by the differential amplifier, which in the case of a 5mV input creates a theoretical output of ca 34V,
which can not be output because the supply voltage of the op-amp is lower. To cancel the offset, the
potentiometer R5 is added to the circuit. R5 has a resistance of 0 − 1MΩ and is connected in parallel
with one of the resistors in the Wheatstone bridge. The chosen resistor should be on the side of the bridge
with the highest potential. By adding a potentiometer in parallel, the chosen resistor can be lowered,
thus adjusting the output of the bridge. With a potentiometer with a maximum resistance of 1MΩ,
the resulting resistance can be adjusted from near the value of the bridge resistor down to 0Ω and thus,
balancing the bridge.

Displacement Signals

For the measurement of linear displacement, a linear variable differential transformer (LVDT) transducer
can be considered. LVDTs operate with magnetic fields and can be produced to slide with almost no
friction. However, they need alternating currents (AC) to operate, which complicates the design. A set
of resistive displacement transducers with removable return springs is used instead and are depicted in
figure 4.8a. These work as a voltage dividers, making them perfect for applications using mainly direct
current (DC). However, some friction might occur while sliding the stem through the housing. The main
goal of measuring forces in this setup is to see how the forces change over time, not to make a perfect
absolute force measurement. The forces exerted by the displacement transducers are therefore considered
to be small enough to be neglected.

For the two antagonist tests, the use of linear displacement transducers is a bit problematic. As
mentioned above, two radial displacement transducers are used instead. These are connected in the exact
same way as the linear transducers, like voltage dividers and are depicted in figure 4.8b. All displacement
signals are connected through a monitor for resistive displacement transducers (figure 4.10). The monitor
has four inputs and internally generates the excitation voltage needed. It has the ability to generate an
excitation voltage of 2.5V, 5V or 10V, and in this case 10V is used to take advantage of the whole input
range of the KUSB3100 DAQ-board. The monitor also has the ability to correct for offset, but this is
better done in software to prevent unwanted adjustments.

42

(a) Two displacement trans-
ducers. To the left, the small
load can be seen. In the top of
the image, the connection point
to a Flexinol is visible

(b) Radial displacement transducer. A thread is routed over to wheel to
measure displacements

Figure 4.8: Displacement transducers

Flexinol Driver Circuit

The last part of the system schematic for the test frame is the driver circuit for the Flexinol wires. The
circuit is depicted in figure 4.11 and only has one input through the small signal nMOS transistor T1
(BSS98 [75]). The BSS98 has a maximum gate threshold voltage (VGS(th)) of 1.6V and should therefore
easily be driven by the 5V digital outputs of the KUSB3100. The drain-source breakdown voltage is at
50V which is more than enough to control the 15V that are used for the Flexinol wire. The drain pin of
T1 is connected to the gate of T2, a pMOS hexfet power transistor (IRF9540N [76]), able to control a
continuous drain current of 23A. This amount of current will require a heat sink when the transistor is
operated, but to control a 100cm of Flexinol wire (ca 15Ω), a current of ca 1A can be expected and thus
should the transistor not need a heat sink. The gate of T2 is driven actively low by T1 and pulled up
by R16 when undriven. The Flexinol wire is connected to the drain of T2, illustrated as a resistor in the
schematic.

4.2.2 Calibration

To ensure correct measurements, the displacement and force setups must be calibrated.

Displacement Calibration

The output from the displacement transducers are assumed to be highly linear, but nevertheless, a
calibration routine is used to ensure this. A ruler is used to measure the amount of displacement while
the corresponding output voltage is noted. This is done at eleven evenly distributed points between 0mm
and 50mm of displacement. The generated table can then be plotted and the linearity can be controlled
against a straight line. If the output proves to be linear, a linear gain factor should be calculated, or
else it must be decided what polynom degree to use. However, before calculating polynoms, it should be
considered whether a non-linearity will cause problems or not in an overall view of the system. For the
radial transducers, calibration is done between 0mm and 100mm.

Force Calibration

Strain gauge load cells will react to both positive and negative forces, and the easiest way of calibration
when the gauges are situated inside the frame would be to position different weights directly on top of

43

Figure 4.9: Displacement signal circuit with monitor that generates the needed excitation voltage

Figure 4.10: Monitor for resistive displacement transducers

Figure 4.11: Flexinol driver circuit. A small signal transistor makes the circuit suitable for the DAQ-unit

44

Calibration
force

Calibration
weight

Strain gauge

Pulley friction
force

Figure 4.12: Calibration setup for force measurements. The pulley introduces a small error in the force mea-
surements

the load cells. However, the output may not be exactly proportional when calibrating this way. Instead,
the wheel of a radial displacement transducer is used as a pulley. A thread is fastened in the load cell,
pulling in upward direction. The thread is then pulled over the wheel as depicted in figure 4.12. This way
of calibrating will contain some error caused by friction when rolling the wheel of the radial displacement
transducer as illustrated in the figure. However, this error is considered small enough to be neglected.
As already mentioned above, the main goal of the force measurements is to uncover relative changes over
time. To investigate the linearity of the load cells, calibration weights between 100g and 1500g with 100g
steps are used (figure 4.13). Analogous to the displacement calibration, a linear gain factor is calculated
if possible.

Figure 4.13: Calibration weights. Combinations of the weights are used to calibrate at 100g steps

4.3 Test Software

For the purpose of testing Flexinol wires, two programs are developed, one for controlling the test frame
and one web application for remote surveillance.

45

4.3.1 Software for the Test Frame

For signal control, data collection and graphical presentation, a measurement program is written. The
program is developed in Microsoft Visual Studio 2008 and is written in the programming language C#
for the Microsoft .Net Framework Runtime. A screenshot of the user interface can be seen in figure 4.14.
The user interface consists of a set of tables continuously showing the last values for input and output,
while the graphs show the same information graphically over time. The program has a simple menu
where the measurements can be started and stopped, and while the program is running, a new setup
for output values can be loaded (described later). Figure 4.15 shows a block diagram of the program
architecture. Each block is described in the next sections.

Figure 4.14: User interface of measurement software. Measurement values are seen in the top, plots in the
bottom of the screen

Data Acquisition (DAQ) Module

The data acquisition module is responsible for communication with the KUSB3100 USB-device [69,
77]. The device is divided into so called subsystems, one for each integrated function. In this module,
analog inputs and digital outputs are handled. Therefore, the two subsystems AnalogInputSubsystem and
DigitalOutputSystem are used. The digital output system is used at its simplest form by outputting one
byte of data. The 8 bits in the byte represent the digital state of the output channels. The control of the
digital outputs is described in the next section.

The analog signals from the test frame may contain some noise from the surroundings - mechanical
vibrations as well as electrical noise. To prevent this from influencing the measurement results, a simple
mean filtering is used. When measuring analog values, the KUSB3100 can be used in either single mode
or continuous mode. In continuous mode, the AnalogInputSubsystem is first configured with a conversion
frequency, a channel list and a data buffer. The conversion frequency is the raw frequency of the digital
to analog converter. If the subsystem is configured with a frequency of 1000Hz, a channel list with one

46

Figure 4.15: Block diagram of the program architecture. DAQ module communicates with the hardware and the
main program handles inputs from the GUI

channel and a buffer for 1000 samples, the resulting buffer will contain 1000 samples of the specified
channel with 1ms delay between samples. However, if two channels are specified and the same frequency
and buffer is used, the resulting buffer will contain 500 samples of each channel with 2ms delay between
samples.

When the DAQ-module receives an analog measurement request, the subsystem is configured with a
suitable frequency, channel list and buffer. After the measurement is started, the module waits until the
buffer is filled, and then the mean value of the samples is calculated and returned.

Output Program Module

The program is supposed to control the Flexinol wires mounted in the test frame continuously for several
weeks. It must be expected that during this period, single wires will have to be replaced. It may also be
necessary to change the output signal before mounting a new wire. To be able to perform this on the fly,
without stopping the program, an output program module is developed. The output program tells the
DAQ-module what control signals to output to the different Flexinol wires at all times. Each output has
its own array in the program module. Each time the DAQ-module sends a request to the output program
module, the next value in the array is returned. The module can be replaced at runtime through the user
interface.

1 [d o u t t i c k]=1000
2 [w i r e 0]=10* f a l s e ; 5* t rue ;20* f a l s e
3 [w i r e 1]=15* f a l s e ; 5* t rue ;15* f a l s e

The code above shows an example of an output program for two wires. The first line tells the DAQ-
module how often it should request a new output value, in this case 1000ms. Wire 0 will in this case have
a low output for 10 · 1000ms = 10s, then a high output for 5 · 1000ms = 5s and finally a low output for
20 seconds. Because the driving of each Flexinol wire requires about 1A of current, it will be desirable
to not have all wires contract at the same time. The output waveform of wire 1 from the above code
will be exactly equal to that of wire 0, with a delay of 5 seconds. When wire 0 turns off, wire 1 turns
on, resulting in a 10 second period of 1A current instead of 5 seconds with 2A current. With only 2A of
current flowing this will normally not be a problem, but with five wires driven at the same time, a current
of 5A would be expected. 5A is the upper limit for continuous current from the laboratory power supply
in use. When operated continuously for a longer period of time, this could cause problems because of
temperature variations in the surroundings.

Setup Module

To be able to change parameters for the program such as gain factors, mapping of outputs etc. without
having to change the program code, a setup module is developed. The setup module opens a text file

47

with lines formatted as

1 [key]= value

and stores these key-value pairs in a hash table. By providing the name of the key and the data
format, the value corresponding to the key is returned. A global setup file is loaded on program startup,
containing names of the five wires, corresponding output and input channels and gain factors. The output
program module mentioned above also uses the setup module to read the file containing the output values.

Graphical User Interface

The graphical user interface (GUI) was briefly presented above and is depicted in figure 4.14. The plot-
ting of the signal data is done with the free scientific charting library NPlot (www.nplot.com). NPlot
is a large library which supports many different types of plots, but is unfortunately not so well docu-
mented. A few tutorials are available from the website, but the class descriptions are very short and
lack examples. However, compared to other free plotting libraries like Chart FX Lite (www.softwarefx.
com/SFXNETProducts/CFXLiteforNet) which contain limitations like maximum one data series, NPlot
is considered to be a very good free solution. A small wrapper class is developed to hold track of the
data series to be plotted with NPlot. The wrapper class has a list of Y-data for all data series and a list
of timestamps for the X-values. Each time the wrapper class gets new data, it deletes all data that is
older than the amount of seconds specified in the setup file. Then the new dataset is passed to NPlot
and displayed. In this way, a charting functionality is created.

4.3.2 Web Application for Remote Surveillance

As mentioned above, the testing of Flexinol wires has a duration of many weeks and during this time,
broken wires and other challenges are expected to occur. In order to remotely monitor the testing, a web
application is developed. The main menu of the web application can be seen in figure 4.16 and consists
of a webcam picture, links to data from the five different wires and a survey of all wires.

The webcam picture is captured by the open source webcam capture program Dorgem, which is
available from http://dorgem.sourceforge.net. It has a built in webserver listening on a selectable
port, in this case port 8080. The webpage itself only contains an image reference to the url http:
//localhost:8080 and each call to this address causes Dorgem to return the latest captured image.

Each of the data links in the main menu lead to a list of available measurement data from the
corresponding wire, as seen in figure 4.17a. A new data file is created every day, and each file is available
through a link to a page that displays detailed information from the file. This page can be seen in figure
4.17b and shows a couple of controls at the top and a plot of the selected data. Alternatively, the data
used to create the plot can also be displayed underneath it. The main goal of the web application is to be
able to browse the measurement data, going back to see for example when a wire snapped. By using the
controls at the top, a section of the file can be extracted and displayed. The first line of controls enables
the user to choose any part of the file to display, alternatively only show every nth line of the selected
section. The second line of controls makes it possible to display the n last lines of the data file.

Because special user rights are desirable, the computer used for measurements is not a part of the
wired network at the University of Oslo (UiO). It therefore doesn’t possess a static IP address and instead,
the address http://flexinoltesting.dyndns.org was assigned to the computer through the dynamic
DNS provider www.dyndns.org. This makes the webserver easy to reach from inside the UiO network or
via VPN.

4.4 Humanoid Finger Design

This section focuses on the design of a humanoid finger, actuated with Flexinol wire. The design is
influenced by some principles from the human anatomy, but is also an attempt to create a finger that can
be actuated with Flexinol wires without making the design too complex. The thoughts of how too design
the finger is highly influenced by the results from the testing of Flexinol (section 5.2) that revealed some
limitations and challenges. All presented 3D models are developed in the CAD software SolidWorks.

48

www.nplot.com
www.softwarefx.com/SFXNETProducts/CFXLiteforNet
www.softwarefx.com/SFXNETProducts/CFXLiteforNet
http://dorgem.sourceforge.net
http://localhost:8080
http://localhost:8080
http://flexinoltesting.dyndns.org
www.dyndns.org

Figure 4.16: Menu for web surveillance. Web camera picture is updated each time the page is loaded

(a) Listing of available data.
Filename, file size and the last
modification date are shown
in the listing

(b) Presentation of one single data file from the listing. By using the
controls on the top of the page, different parts of the data file can be
inspected

Figure 4.17: Data view from web surveillance

49

4.4.1 Anatomical Model

The presented finger is partially built up like the human finger. Mechanically, it consists of four phalanges
connected with three hinge joints. The joint between the metacarpal phalanx and the proximal phalanx
is able to perform adduction and abduction by humans in addition to flexion and extension. Adduction
and abduction is not a part of this mechanical design to keep it as simple as possible. If a good controlling
of flexion and extension is achieved, this should be easily adaptable to adduction and abduction in later
designs.

As presented in section 2.1, the human anatomy uses muscles to create motions and tendons to transfer
the motions. Tendon routing is done highly sophisticated in the human hand, causing for example that
a flexion of the DIP-joint will automatically result in a flexion of the PIP-joint. This design makes the
human hand highly suitable to grasp around objects. A good control of the contraction of the Flexinol
wires would make such a design possible, but if not, it could make the finger impossible to control. This
function of the human finger was therefore not used.

The extension of the finger is done in the same way as in the human hand. A single extensor tendon
is straightening the joints on the upper side of the finger. The size of the finger segments are based on
measurements of the hand of a 24 year old male.

4.4.2 3D Design

The 3D design is an attempt to combine the anatomical aspects from the last section with the abilities
and limitations of the 3D printer Dimension SST 768. Figure 4.18 shows the end result of the designed
parts. As the figure shows, most edges in the design have been rounded. This is done because straight
edges tend to be rather weak when printed in ABS-plastic. Each finger segment has a height and a width
of 4cm and a varying length. As mentioned above, the finger sizes are based on measurements of a human
hand. To make a mechanical analysis easier, the finger is designed in a ratio of 3:1 to the measures. The
oversized design also makes more space available for tendon routing.

Figure 4.18: 3D design of a humanoid finger. The finger is designed in SolidWorks and then printed in ABS
plastic

Metacarpal Phalanx (MCP)

The metacarpal bone of the human hand is inside the palm and therefore doesn’t appear as a part of
the finger. In this design the metacarpal bone is used as a base for the hole finger construction and is
depicted in figure 4.19. On the back end of the finger segment, four holes can be seen in the top view
of the drawing. These are for mounting the finger and are positioned in the back to prevent obstruction
of the finger movement. The joint at the other end of the segment is the first finger joint, namely the
metacarpal phalangeal joint (MCP-joint). As can be seen from the top and bottom view in the drawing,

50

two slots are cut in from the end of the finger segment. These two slots will be connected with the next
finger segment as described later. The radial part of the joint can be seen in the side view and ensures
that the joint will be able to move freely over 90◦. As described later, the corresponding end of the
connected joint is also designed to fit exactly with the shape of the metacarpal phalanx, ensuring exactly
90◦ of movement.

Bottom viewSide view Top view

Pivot point for MCP-joint

Screw holes

Channel for
extensor tendon

Channel for all
flexor tendons

Mounting holes

extensor tendon
Channel for

flexor tendons
Channel for all

Channel for current
flexor tendon

Channel for
current flexor tendon

SolidWorks Educational License
Instructional Use OnlyFigure 4.19: Drawings of the metacarpal phalanx from different angles. This is the first finger segment and is

fastened to the forearm

As mentioned above, the human finger is designed in such a way that if the DIP-joint of the finger
is flexed, this will also cause a flexion in the PIP-joint. To prevent this kind of movement in the 3D
model, the tendons will be routed through the pivot point of each joint. When for example the end joint
(DIP-joint) of the finger is flexed, the corresponding tendon will be tightened, exerting forces on each
joint it is routed through. By routing the tendon as near as possible to the pivot point of the other joints,
the exerted forces will be minimal, causing movement only in the correct joint. To make room for such
a construction, the center of each joint has to be kept free. As can be seen in the lowest part of figure
4.19, this is done by splitting the joint axle in two parts, each one entering from its own side of the joint.
The two axles are normal M5 screws with a length of 16mm. The outer screw holes have a diameter of
5mm, allowing the screws to slide in without much friction. The inner holes have a diameter of 4.8mm,
which is small enough to fasten the screws.

Figure 4.20: Tendon routing inside the finger. The tendon is routed through the pivot point of the joints, creating
minimal torque

51

Figure 4.20 shows the routing schematic for the hole finger. The routing channels can also be seen
from different angles in figure 4.19. The channel for the current MCP-joint starts at the back end of the
MCP, where all three flexor tendons enter the construction. Two tendons (green and blue) are routed
straight through the segment, through the pivot point and into the next finger segment. The current
tendon (red) is routed diagonally to the bottom of the finger segment and then along to the next segment
where it is connected. If a pulling force is exerted to this tendon, the result will be that the connection
point of the tendon on the proximal phalanx will be pulled against the MCP causing the joint to flex.

At the top of the routing schematic, a channel for the extensor tendon can be seen. This is just one
single tendon that is routed through all the segments of the finger and connected with the last one. To
prevent damage to the extensor tendon, too much friction forces and unwanted forces when a joint is
flexed, this channel is cut to align concentrically to the pivot point of each joint.

Proximal Phalanx

The proximal phalanx (figure 4.21) is the first finger segment with a joint in each end. The MCP-joint
only consists of two plates, fitting exactly into the slots of the MCP. A 5mm hole through the pivot point
of the joint allows the screws mentioned in the last section to be inserted. The other end of the proximal
phalanx is the PIP-joint and is built up with two slots, exactly like the MCP-joint of the MCP segment.
As figure 4.20 shows, the first flexor tendon (red) is connected to the lower side of the proximal phalanx.
This is done by making a horizontal channel for the tendon as figure 4.20 and 4.21 show. A vertical hole
with a diameter of 2.8mm is then cut through the tendon channel. This will allow a 3mm screw to be
mounted into the hole, locking the tendon in place.

E
n
d
 (
M
C
P
)

Exit point for tendon channel

Extensor tendon channel

Bottom

Bottom viewTop view

Projections

Pivot point for PIP-joint

Side view

Tendon routing channels

Fastening point for tendon

Pivot point for MCP-joint

E
n
d
 (
P
IP
)

SolidWorks Educational License
Instructional Use Only

Figure 4.21: Drawings of the proximal phalanx from different angles. This is the second finger segment

The proximal phalanx is a bit shorter than the metacarpal phalanx. As figure 4.21 and 4.20 show, this
results in a shorter and steeper routing channel for the current flexor tendon (green). To prevent corners
in the routing channel, the channel is designed to be orthogonal to the pivot point of the MCP-joint. In
practice, this means that the tendon will always go in a straight line from the pivot point to the lower
side of the proximal phalanx. The projection view of figure 4.21 clearly shows where the MCP flexor is
connected and where the PIP flexor exits. As with the metacarpal phalanx, the proximal phalanx also
has a tendon channel for the extensor mechanism in the top of the construction.

52

Intermediate Phalanx

The intermediate phalanx is constructed very much like the proximal phalanx. The only difference is
that the intermediate phalanx is even shorter, making tendon routing a challenge. As figure 4.22 shows,
the tendon channel is very steep, leaving almost no room for a tendon fastening mechanism. To be able
to fasten the tendon, a channel is constructed as for the proximal phalanx. However, this channel cannot
be cut in the longitudinal direction because it would then collide with the other tendon channel. The
fastening channel is therefore cut latitudinal, leaving enough room for both the fastening screw and the
tendon channel.

As figure 4.20 shows, the tendon (blue) that is routed through the intermediate phalanx is the last
flexor tendon, responsible for flexing the DIP-joint. The extensor channel is routed through the top of
the phalanx as for the two previous finger segments.

Bottom

E
n
d
 (
D
IP
)

Exit point for flexor tendon channel

Extensor tendon channel

Projections

Bottom viewTop view

Pivot point of DIP-joint

Side view

Pivot point of PIP-joint

Fastening point for flexor tendon

E
n
d
 (
P
IP
)

SolidWorks Educational License
Instructional Use Only

Figure 4.22: Drawings of the intermediate phalanx from different angles. This is the third finger segment

Distal Phalanx

The distal phalanx is the last finger segment and therefore differs from the others. Figure 4.23 shows
drawings of the distal phalanx. The PIP-joint of the segment is built up exactly as described for the other
finger segments with two plates fitting into the other side of the joint. The other side of the phalanx is
rounded, making it look like the finger tip of a human finger. Both on the upper and lower side of the
finger segment, fastening mechanisms for tendons are situated. The upper one is for the extensor tendon,
and has its entering hole inside the PIP-joint. A screw hole is cut to fasten the tendon. Analogous to the
proximal phalanx, a tendon channel is cut in the longitudinal direction, assuring a tight fastening of the
tendon.

4.5 Humanoid Finger Application

As already mentioned, the above presented design is prototyped with a 3D printer. The resulting finger,
produced in ABS plastic, now has to be assembled and put into a finger application. In general, the

53

Side view Top view Bottom view

Projections

Pivot point of DIP-joint Fingertip

Screw hole for extensor
tendon fastening

Fastening mechanism for flexor tendon

Channel for extensor fastening

SolidWorks Educational License
Instructional Use Only

Figure 4.23: Drawings of the distal phalanx from different angles. This is the tip of the finger

application consists of three main parts. The main mechanical part is the finger which is supplied with
tendons in the form of the fishing line FireLine from Berkley (www.berkley-fishing.com). The finger is
fastened to the second part of the application which is a rectangular aluminium tube, acting as a forearm,
holding three Flexinol muscle fibers, an extensor return spring and sensors for displacement and force.
Finally, an electrical circuit controlled by an Atmel ATMega32 is used to control the muscle fibers, read
sensor data and communicate with a computer. Figure 4.24 shows a picture of the finger mounted on
the forearm.

4.5.1 Mechanical Design

The base of the mechanical design is a rectangular aluminium tube. The tube is used to wire sensors
and power supply, keeping them away from the hot Flexinol wires which potentially could melt the wire
isolations, causing short circuits. The aluminium tube could have been used as electrical ground, but this
was considered too hazardous. If a wire would break near to the end with the highest potential, and the
broken wire would touch the tube, large currents would be expected (1Ω⇒ 15A). This could potentially
overheat and damage some parts of the electronics.

Elastic Displacement Transducer

A first attempt to measure the displacement of the muscle fibers is done with an elastic displacement
transducer. The principle of this measurement is depicted in figure 4.25. The elastic transducer has a
resistance that changes when the transducer is stretched. It is fastened to the joint between the tendon
and the Flexinol wire in a stretched state. When the Flexinol wire is contracted, the joint moves to the
right, shortening the transducer. By including the transducer in a voltage divider, a voltage proportional
to the amount of contraction can be measured. However, as the results in section 5.4.1 shows, the
measurements are not stable, making the transducer unsuitable for this application.

54

http://www.berkley-fishing.com

Figure 4.24: Assembled finger mounted on an aluminium forearm. The finger segments are connected with
normal machine screws

Finger

Tendon Flexinol wire

Elastic transducer

Joint

Block

Figure 4.25: The elastic displacement transducer (blue) changes its resistance when it is stretched

Radial Displacement Transducer

To overcome the problems of the elastic displacement transducer, a small radial transducer is developed
instead (figure 4.27). The transducer is based on a standard one turn trimmer potentiometer which is
easily soldered onto a PCB strip board with 2.54mm grid. A bracket is designed to fasten the strip board
in a upright position on the aluminium tube. A principle schematic can be seen in figure 4.26.

The expected displacement from the Flexinol wire is about 4.5cm, and to ensure that the transducer
can handle this, a wheel with a diameter of 2cm is designed. This makes one turn on the potentiometer
equal to a length of π · d = π ∗ 2cm = 6.28cm. A first version of the wheel is depicted in figure 4.28a.
The tap in the center of the wheel is mounted inside the potentiometer and then fastened with a screw.
The tap appeared to be the weakest structure of the printed part, so a second version of the wheel is
developed (figure 4.28b). Instead of the tap, a screw is fastened through the potentiometer, directly into
the wheel. A washer is used to separate the wheel from the body of the potentiometer.

The potentiometer is wired as a voltage divider, causing its output to span from 0V to Vdd. This leads
to a better resolution than the elastic transducer, that would need a resistor in series towards ground.
The transducer wheel was developed in SolidWorks and printed on the 3D printer.

Bracket for Force Measurements

The strain gauges used for force measurements in the test frame are too large in size to be fitted into
the finger application. Instead, a pressure sensor is used (section 2.5.2). The sensor can be seen in figure
4.29 and is mounted together with a bracket at the end of a Flexinol wire. The bracket is designed in
3D and printed on the 3D printer. It consists of two base parts, each with a hole through the center to

55

Finger

Tendon Flexinol wire
Joint

Block

Rubber band

Radial transducer

Figure 4.26: A thread is used to rotate the radial displacement transducer. The thread is returned by a rubber
band

Figure 4.27: Radial displacement transducer mounted on the forearm. Rubber band and Flexinol wires can also
be seen

(a) Version 1. The center tap proved to
be to weak when printed in ABS plastic

(b) Version 2. The wheel is held in
place by a screw instead of the tap

Figure 4.28: 3D model of radial displacement transducer wheel

56

fasten screws. The base also has one hole in each corner. Two of them are for fastening screws and two
of them can be used with a screwdriver in order to fasten screws in the other base part. The bracket also
has two washers between the bases. One of them has a slot where the pressure sensor can be inserted.
The pressure sensor is then held in place after the screws have been mounted. The last washer is pressed
against the pressure sensor when the base parts are forced away from each other and thus, making a force
measurement possible.

(a) Version 1. The circular design left
little room for mounting screws.

(b) Version 2. The rounded rect-
angle shape allows mounting of
screws in the corners.

(c) Printed bracket is fixated in one
end. When the Flexinol wire is tight-
ened (lower part of image), a force can
be measured.

Figure 4.29: 3D model of force bracket

Force Calibration

The pressure sensor changes its resistance when a weight is pressed against it. To calibrate the pressure
sensor, the force bracket is mounted inside the above mentioned test frame. A hook is fastened to the
lower end of the bracket, allowing different weights to be hung on it. By applying weights in the span
from 100g to 1500g with steps of 100g a good calibration curve is achieved.

4.5.2 Electrical Schematics

Figure 4.30 shows the electrical schematic drawing for the finger application. The control unit of the
system is represented by an ATMega32 microcontroller. The microcontroller controls the Flexinol wires
that are driven with the same circuit as depicted earlier in figure 4.11. A 5V voltage regulator supplies
the microcontroller and is used as excitation for displacement and force measurements. A 6 pin ISP
connector is used as programming interface for a computer running the development tool AVR Studio
from manufacturer Atmel.

4.5.3 Communication

The finger application is designed to be a remotely controlled stand-alone system. As can be seen from
the schematics in figure 4.30, a MAX202 driver chip is connected to the ATMega32. The MAX202 is
needed to convert the 0V-5V TTL signal levels from the microcontroller to RS232 levels of ±12V . The
driver (figure 4.31) uses its 5V supply voltage together with a charge pump to build up +12V over an
external capacitor. This voltage is then inverted with another charge pump to provide −12V . The TX-
and RX-pins of the ATMega32 are connected to T1in and R1out, correspondingly.

57

Figure 4.30: Electrical schematic for the finger application. The ATMega32 microcontroller is used for mea-
surements, computations and output signals

The MAX202 is connected to a DB9 connector with a minimal connection (ground, rx and tx), which
is sufficient for this application. A computer can then be used to connect to the finger application via
RS232.

Figure 4.31: Maxim MAX202 level shifter for serial communication between ATMega32 microcontroller and
host computer[78]

4.5.4 Microcontroller Program

The ATMega32 is controlling the Flexinol wires and reading sensor inputs. For these tasks, a micro-
program is needed. Programs for the ATMega32 are normally written in C and compiled with the free
WinAVR compiler. Some prefer to write programs directly in AVR assembly, but this solution should
only be chosen if the programmer needs control over every clock cycle, as assembly has a much lower
readability and scalability than the C language. A block diagram of the program can be seen in fig-
ure 4.32. A command interpreter is developed to provide a flexible remote interface. The implemented
interpreter is presented in the following section.

58

Figure 4.32: Block diagram of the micro program. Reception of commands is done by the UART module, analyzed
by the interpreter module and executed in the main program

Command Reception

As already mentioned, the program receives commands over the UART interface. The reception of data
can occur occasionally and should therefore be handled in a suitable way. There are in general two ways
to check whether a data byte has been received. The first method is to check the status register of the
UART regularly. This method applies large limitations to the program, as the UART has to be polled
continuously to avoid losing data bytes. Instead, the reception of data is done with interrupts. A buffer
is implemented as an array, capable of holding 50 bytes of data. The interrupt service routine puts the
received data byte in the first free position of the buffer each time an interrupt is triggered. At the same
time, the interrupt service routine checks if the received data byte is a newline character. If this is the
case, a complete command has been received and has to be analysed.

Command Analysis

The analysis of a command is performed by the interpreter. The interpreter consists of two main functions.
The first function is used to determine which command is present. This is done by comparing the
first characters of the received buffer to the different commands supported by the interpreter. The
comparison function in use is called strncasecmp(S1,S2,len) and is available in the string.h of the WinAVR
distribution. The second function of the interpreter is a method to extract the arguments of the command.
This function takes two arguments - a reference to the buffer and the number of arguments to look for.
It loops through the buffer and converts every ASCII represented argument to a binary format. The
function stops when it finds a newline character, but before it returns, it checks if enough arguments have
been found. It then returns a 0 if enough arguments are provided, 1 if not. By allowing commands to be
sent in a ASCII format, more buffer memory and more processing power is needed. However, this ensures
a command interface that is easier to use and to debug than an interface dealing solely with binary data.

Command Execution

When the interpreter has found a matching command and the number of arguments is found to be
correct, a corresponding command flag is set in the main program loop. The main loop holds one flag for
each operation it supports and the only task of the loop is to check whether one of these flags has been
set. If this is the case, the corresponding function is executed. This behaviour means that during the
execution of an operation, the command interface will react to new commands and set command flags,
but the arguments of a new command will overwrite the last arguments. To prevent such an unwanted
behaviour, a busy flag is introduced. This flag is set to 1 during an operation, and by sending the
command BUSY? over the interface, the current state is returned.

59

Command Set

Command Arguments Description
IDN? 0 Returns an identifier string for the program
PWM? 1 Returns the current PWM duty cycle
PWM 2 Sets the current PWM duty cycle
CURRENT? 1 Returns the result of a current measurement
DEFLECTION? 1 Returns the result of a deflection measurement
FORCE? 1 Returns the result of a force measurement
CONT CURRENT DEFLECTION 7 Starts a continuous measurement of current

and deflection
CONT CURRENT 4 Starts a continuous measurement of current
CAL CURRENT 1 Calibration function for current control
CONT DEFLECTION 4 Starts a continuous measurement of deflection
CAL DEFLECTION 1 Calibration function for deflection measure-

ments
CONT FORCE 4 Starts a continuous measurement of force
SET DEFLECTIONS 6 Sets the amount of wanted deflection in all

joints
SET DEFLECTION 4 Sets the amount of wanted deflection in one

joint
SET CURRENT 4 Sets the amount of deflection controlled by the

measured current
SET FORCE 4 Sets the amount of deflection controlled by the

measured force
BUSY? 0 Returns the current state of the program
STOP 0 Stops the current operation
RESET 0 Causes a watchdog reset to be performed

Table 4.1: Command set for the microcontroller program

Table 4.1 shows all the operations that the interpreter is programmed to receive. The IDN? command
is just an identification command supported by many instruments. A string containing the name of the
micro program and the version number is returned. The control of the three Flexinol wires is done with
a PWM-signal. The duty cycle of these signals can be set using the command PWM ch value, where ch
is the channel number (0-3) and value is the duty cycle (0-255). The actual PWM signal for the channel
ch can be queried in the same way with the command PWM? ch.

1 // Set duty c y c l e o f PWM channel 0 to 50\%
2 PWM 0 128
3

4 // Read the cur rent duty c y c l e o f PWM channel 1
5 PWM? 1

The function DEFLECTION? ch causes the ADC unit to perform a measurement of the specified Flexinol
wire. The result of the measurement is the mean value of five measurements with 1ms delay between
each. The mean value is then converted from ADC units to volts and returned with three decimals of
precision. The FORCE? ch command works in the same way as DEFLECTION?, returning the mean value
of five measurements of the specified force channel.

1 // Read d e f l e c t i o n from channel 0
2 DEFLECTION? 0
3

4 // Read f o r c e from channel 2
5 FORCE? 2

60

To be able to visualize the data from the sensors, different continuous functions are developed.
The command CONT CURRENT DEFLECTION cch0 cch1 cch2 dch0 dch1 dch2 delay performs continu-
ous measurements of each of the current channels (cch) and deflection channels (dch) marked with ’1’.
The number of milliseconds of delay between each measurement is specified in the last argument. For
each measurement, the mean value is sent over the RS232 interface to the host computer. The following
code demonstrates how to setup the microprogram to perform 5 measurement per second of current and
deflection on channel 0.

1 // Read cur rent channel 0 and d e f l e c t i o n channel 0 every 200ms (5Hz)
2 CONT CURRENT DEFLECTION 1 0 0 1 0 0 200

The results from such a measurement can hopefully be used to make a regulation algorithm that
controls the amount of deflection by controlling how much current is flowing through the Flexinol
wire (temperature dependent, see section 2.3). Similar to CONT CURRENT DEFLECTION, the commands
CONT CURRENT, CONT DEFLECTION and CONT FORCE perform continuous measurements of current, deflec-
tion and force respectively.

1 // Read cur rent channel 0 every 20ms (50Hz)
2 CONT CURRENT 1 0 0 20
3

4 // Read d e f l e c t i o n channel 1 every 50ms (20Hz)
5 CONT DEFLECTION 0 1 0 50
6

7 // Read f o r c e channel 2 as f a s t as p o s s i b l e
8 CONT FORCE 0 0 1 0

The commands described so far does not include any form of regulation, they are solely meant to
analyse the behavior of Flexinol. There are in general three ways to regulate the contraction rate of
Flexinol in this application. The first and most direct way to regulate is to use the deflection measurement
as feedback in the regulation loop. To use this method, the microprogram first has to be calibrated with
the outer boundaries of each finger joint. This is done with the command CAL DEFLECTION, which performs
an automatic calibration. The program presumes that each finger joint is completely stretched when the
command is executed. The calibration algorithm first reads the value from the deflection sensor and uses
this as the first boundary (0o). The Flexinol wire corresponding to the same joint is then turned on,
making the joint flex. A delay of 1500ms is added to the algorithm in order to be sure that the wire
starts to contract. The deflection sensor is then read every 500ms and compared to the last read value.
When the difference between the two values is less than 0.01V , the algorithm saves the last deflection
measurement as the second boundary (90o) and then turns the wire off. The procedure is then repeated
for the two other joints.

When the calibration is done, the commands SET DEFLECTION or SET DEFLECTIONS can be used to
regulate the Flexinol wires. SET DEFLECTION only regulates one wire and has the channel, the amount of
deflection, regulation factor and verbose as parameters. It is only meant for testing purposes as normally
all three joints of the finger will be regulated. SET DEFLECTION uses the same regulation algorithm as
SET DEFLECTIONS. SET DEFLECTIONS is the main regulation command in the application. It takes one
deflection value for each joint, a regulation factor, a verbose flag and how often a verbose should occur
as arguments.

1 // Ca l i b ra t i ng d e f l e c t i o n
2 CAL DEFLECTION
3

4 // Regulate each j o i n t to 45 degrees , r e g u l a t i o n f a c t o r 10 ,
5 // verbose every 100 th r e g u l a t i o n c y c l e
6 SET DEFLECTIONS 128 128 128 10 1 100

The regulation algorithm first calculates the deflection sensor value corresponding to the set value
from the user. This is written as

sensorV alue = min+
(max−min) · setV alue

255

61

where min is the deflection sensor value at 0o and max is the deflection at 90o. setV alue is the de-
flection value provided through the command arguments. The algorithm then reads the actual deflection
D and calculates the absolute error value err

err = setV alue−D

Then the correction value errP is calculated as

errP =
err · 255

max−min
· reg

64
The expression takes the relationship between the error err and the total span between min and max

and multiplies it with the regulation factor reg. If the regulation factor is chosen to be smaller than
64, a dampening of the regulation is achieved. If it is chosen to be greater than 64, an amplification is
achieved. The value of errP is then added to the current PWM output signal. After the new PWM
value is calculated, the algorithm checks if the verbose flag is set and checks the verbose frequency value
to see if the current values should be sent via RS232. The values of the verbose flag decides what values
are to be sent according to table 4.2.

Decimal Binary Description
0 0b0000 No output
1 0b0001 Only the current PWM value
2 0b0010 Only the current deflection
4 0b0100 Only the current force/current
3 0b0011 Deflection and PWM value
5 0b0101 Current/force and PWM value
6 0b0110 Current/force and deflection
7 0b0111 Current/force, deflection and PWM value

Table 4.2: Values for the verbose flag. By choosing the correct flag, a selection of what data to return from the
microcontroller can be done

The second regulation method uses the amount of current flowing through the wire to control the
amount of deflection. As described in section 2.3, the electrical characteristics of Flexinol changes as
a function of contraction. This means that by knowing how much current is flowing through the wire
at different contraction rates, this can be used to control the wire to the same contraction rate using a
current measurement as feedback. This solution has the advantage that it in general does not need a
deflection sensor, desirable to minimize systems. However, the electrical characteristics also have a second
parameter, namely the amount of stress that is exerted to the Flexinol wire. In the scope of this thesis,
regulation is done with only current as feedback, with no stress applied to the wires while regulating. To
calibrate the algorithm, the command CAL CURRENT is implemented. CAL CURRENT is dependent on the
CAL DEFLECTION command to be executed in advance. It divides the complete deflection range into 16
equal steps and regulates to each of them with deflection as feedback. At each step, a mean value of 150
current measurements is saved. The result of the calibration is an array holding 16 values describing how
much current is excepted at different rates of contraction.

When the calibration is done, the command SET CURRENT is used to start the regulation. SET CURRENT
takes four arguments - the channel to regulate, the current step to regulate after (0− 15 = 0o− 90o), the
regulation factor and a verbose flag. The current flowing through the Flexinol wire is determined by the
PWM signal from the ATMega32. This means that the current flowing will have the same characteristics
as a PWM signal, alternating between no output and maximum output. To control the wires as accurate
as possible, the mean value of the current should be measured. This is done by an external RC-filter.
Unfortunately, the PWM signal has a rather low frequency, and the RC filter therefore has a time constant
τ = RC that is rather high. This leads to an unwanted delay in the regulation loop. The regulation itself
uses the same proportional regulation as SET DEFLECTIONS.

1 // Ca l i b ra t i ng d e f l e c t i o n
2 CAL DEFLECTION
3

4 // Ca l i b ra t i ng cur rent s t ep s f o r wire 0

62

5 CAL CURRENT 0
6

7 // Regulate wire 0 to cur rent s tep 7 (45 degree s) with r e g u l a t i o n
8 // f a c t o r 100 and verbose f l a g s e t
9 SET CURRENT 0 7 100 1

During a regulation or calibration, the micro program must be stoppable. This is implemented with
a stop flag, similar to the start flags described above. The command BUSY? may first be used to check
whether the micro program is currently running any functions. If this is the case, the command STOP may
be sent to abort the current operation. All functions that do regulation and calibration are programmed
to set all PWM outputs to 0 when the STOP command is received. For unwanted program states during
development, the command RESET is implemented. RESET enables the watchdog timer and sets its time
out value to 15ms. It then waits in an infinite loop until the watchdog resets the microcontroller. In this
way, a software reset can be done that in normal cases is guaranteed to cause the same effect as power
cycling does.

4.5.5 Computer Interface Program

The regulation algorithms and calibration routines described so far are all implemented in the microcon-
troller. However, the need for sensor data analysis and a command interface makes an interface program
necessary. The program supports different profiles, making it backwards compatible with older versions
of the microcontroller program. At program startup, the user has to choose which profile folder is to
be used. The folder contains one file with all commands and one file with all commands that causes a
regulation loop to be executed.

Command Mode

Figure 4.33 shows the first mode of the program, the command mode. In this mode, the user chooses one
of the commands in the list on the left side of the screen. The available commands, argument names and
standard values are read from the command file described above. When the user selects a command, the
correct number of text boxes for arguments are shown with corresponding argument names and standard
values. When the green send button is pressed, a text string is concatenated from the command and its
argument values. The string is then sent to the microcontroller via the serial port. At the same time the
string is written to the main text field and a timer is started in the background. The timer is set to check
the RS232 receive buffer for new data. If the buffer contains a complete line terminated with a newline
character, the line is printed to the main text field on the screen. The red stop button is programmed to
quickly send the STOP command to the microcontroller in case of unwanted behaviour or emergencies.

Figure 4.33: Command mode of the interface program. This mode is used to execute single commands

63

ASCII mode

The second mode of the interface program can be seen in figure 4.34 and is called the ASCII mode. ASCII
mode is the simplest form of communication with the microcontroller and is in reality only a terminal
program. When the send button is pressed, the text in the input field is sent to the microcontroller and
logged in the large text field. A timer is then started analogous to the command mode. The ASCII mode
is meant for command prototyping and easy debugging.

Figure 4.34: ASCII mode of the interface program. This mode is used to prototype and debug with text input

Continuous Mode

The third program mode is the continuous mode, depicted in figure 4.35. The continuous mode contains
a list on the left side of the screen, similar to the command mode. The commands available are read from
the file with continuous commands as described above. This mode is used to visualise the different sensor
signals over time. As the figure illustrates, instead of a text field, a plotting surface is available. The
Y-axis of the graph is auto scaling. The length of the X-axis is adjustable during use to allow different
time resolutions. The continuous mode also contains a checkbox that controls whether or not the received
data is to be saved. If yes, all data is saved to an auto generated file in the program folder.

4.5.6 Interface for Microsoft Robotics Studio

As described in section 3.3, the Microsoft Robotics Studio is a framework for robotic applications aiming
to provide a fast and powerful base for development. A prototype service is therefore developed to connect
the finger with Robotics Studio. Figure 4.36 shows a screenshot of an interface that is integrated in the
web based control panel of Robotics Studio. The service communicates with the microcontroller via the
same module that was used in the interface program in section 4.5.5. The static nature of html pages
makes interactive feedback of sensor data difficult, and therefore only a selection of the microcontroller
functions are realized. As depicted in the figure, the first table shows if the service is connected to the
microcontroller and provides buttons for connecting, resetting or stopping the current function running
on the microcontroller. The second table shows the last set of sensor readings. These values are updated
every time the page is refreshed. Finally, the last table allows the user to set the duty cycle of each
PWM-output or to start the regulation of a given amount of flexion in the joints.

4.6 Summary of Own Methods

In this chapter, a number of self developed methods have been presented. Firstly, different mechanical
tests for the Flexinol muscle fibers were proposed. A test frame was built to perform the tests that

64

Figure 4.35: Continuous mode of the interface program. This mode is used to plot data from continuous
microcontroller commands

were controlled and monitored by a self programmed measurement software, running on a laboratory
computer. A web application was developed to be able to monitor the tests from a remote connection.

A 3D model of a humanoid finger was then developed using the CAD software SolidWorks. The model
was produced in ABS-plastic with a 3D printer and then mounted to an aluminium tube. Tendons were
routed and connected to Flexinol wires for actuation. An electronic circuit was built, using a microcon-
troller as control unit for the Flexinol wires and for sensory input. A microprogram was developed to
run on the microcontroller, containing a command set with a number of different control options. An
interface program was developed to interact with the microcontroller from the laboratory computer via
RS232. An optional interface for Microsoft Robotics Studio was also developed.

65

Figure 4.36: Web interface for the humanoid finger, implemented in Robotic Studio. The user can control the
finger through the control panel

66

Chapter 5

Experiments

This chapter describes the results from the methods presented in the previous chapter. First, calibration
results for force and displacement are given. These results are necessary to perform measurements while
testing Flexinol. Secondly, the results from the testing of Flexinol is given and finally, the developed
humanoid finger is discussed.

5.1 Calibration Results

Calibration of the test frame was done according to section 4.2.2. Although some non-linearities were
discovered, these were considered small enough to be negligible both for displacement and force. Both
calibration result tables contain columns named NL (non-linearity). NL is the deviation from a straight
line through the calibration points, calculated by the method of least squares. The calculated line is
written as y = Ax+B, where A is the gain and B the offset found in the calibration tables.

5.1.1 Displacement Calibration

Table 5.1 shows the calibration results for the displacement transducers. The left part of the table
contains values for the linear displacement transducers while the right part contains values for the radial
transducers. The negative values are caused by the displacement monitor that generates the needed
excitation voltage. The first radial transducer was calibrated with 0-90mm as the output value would
drop before 100mm was reached.

The results from the calibration are visualized in figure 5.1. The calibration curves show that the
output is near to linear. This assumption is also confirmed by the NL-columns of the table. All over,
the NL varies around 0.03V for the linear displacement transducers, which equals about 0.34mm when
scaled. This is less than 1% of the 50mm measuring range. The worst case is an error of 0.076V , which
equals 0.8mm and 1.6%. For the radial transducers, the NL varies around 0.04V which equals about
0.43mm, less than 0.5% of the 100mm measuring range. The worst case is an error of 0.073V , which
equals 0.8mm and 0.8%.

All mentioned error values are considered negligible.

5.1.2 Force Calibration

Table 5.2 shows the results from the force calibration. By looking at the calibration curves in figure 5.2
and the NL-values in the table it becomes clear that the load cells are also linear. The highest error value
is 0.038V , which equals about 18g and 0.18N . This error is considered negligible.

5.2 Testing of Flexinol

The aluminium test frame described in the previous chapter was used to fasten and test Flexinol wires
in different setups. The frame was designed to hold 5 parallel wires of 1m in addition to displacement
and force sensors. It proved to be large and stiff enough for all tests.

67

Small load Heavy Load Flexinol Ant. Spring Ant.
cm ch 0 [V] NL ch 1 [V] NL cm ch 2 [V] NL ch 3 [V] NL
0,0 -0,060 0,037 -0,103 0,076 0 0,277 -0,044 -0,105 0,073
0,5 0,340 -0,025 0,239 -0,048 1 1,322 -0,007 0,783 0,028
1,0 0,803 -0,023 0,717 -0,036 2 2,324 -0,013 1,641 -0,048
1,5 1,300 0,012 1,222 0,003 3 3,370 0,025 2,585 -0,038
2,0 1,750 0,000 1,688 0,003 4 4,415 0,062 3,546 -0,010
2,5 2,217 0,006 2,154 0,003 5 5,376 0,015 4,488 -0,002
3,0 2,670 -0,003 2,598 -0,019 6 6,383 0,014 5,361 -0,062
3,5 3,117 -0,017 3,075 -0,009 7 7,373 -0,004 6,332 -0,025
4,0 3,590 -0,006 3,555 0,005 8 8,380 -0,005 7,306 0,016
4,5 4,057 0,000 4,008 -0,008 9 9,350 -0,043 8,253 0,029
5,0 4,538 0,019 4,511 0,029 10 9,196 0,039

Offset 0,105 0,194 -0,318 0,192
Gain 1,083 1,072 0,992 1,071

Table 5.1: Calibration table for displacement. The results show that the displacement transducers can be consid-
ered linear

Figure 5.1: Calibration curve for displacement. Almost no non-linearities are visible. Small deviations are seen
around 0mm displacement

68

Fixation Flexinol Ant. Spring Ant.
g N ch 0 [V] NL ch 1 [V] NL ch 2 [V] NL
0 0,000 0,130 0,027 0,301 0,038 0,183 0,014

100 0,981 0,272 0,002 0,478 -0,001 0,455 0,014
200 1,962 0,436 -0,001 0,682 -0,012 0,733 0,019
300 2,943 0,593 -0,011 0,900 -0,009 0,990 0,003
400 3,924 0,758 -0,013 1,116 -0,009 1,248 -0,011
500 4,905 0,927 -0,011 1,334 -0,006 1,499 -0,033
600 5,886 1,101 -0,004 1,549 -0,006 1,786 -0,018
700 6,867 1,265 -0,007 1,768 -0,002 2,061 -0,016
800 7,848 1,437 -0,002 1,985 -0,001 2,343 -0,007
900 8,829 1,606 0,000 2,191 -0,010 2,605 -0,018

1000 9,810 1,784 0,011 2,412 -0,004 2,926 0,030
1100 10,791 1,944 0,004 2,644 0,012 3,187 0,019
1200 11,772 2,110 0,003 2,840 -0,007 3,439 -0,002
1300 12,753 2,277 0,003 3,058 -0,004 3,703 -0,011
1400 13,734 2,442 0,001 3,282 0,005 3,994 0,007
1500 14,715 2,609 0,001 3,509 0,016 4,268 0,009
Offset -0,604 -1,199 -0,465
Gain [V⇒N] 5,873 4,556 3,545

Table 5.2: Calibration table for force. The results show that the load cells can be considered linear

Figure 5.2: Calibration curve for force. Almost no non-linearities are visible. Small deviations are seen around
0N

69

5.2.1 Test Software

The main task of the test software is to perform measurements and to control output signals, as described
in section 4.3.1. During the first weeks of testing, the computer used for the measurements tended to run
out of memory. A memory leak was suspected, and a first attempt to find the error was done with the
Microsoft CLR Profiler, a help tool to locate memory leaks. The profiler showed clearly that the memory
was growing constantly, which confirmed the assumption of a memory leak. As memory was growing with
little steps, a new assumption was made that the leak had to be in either the function controlling the
output or in the function performing the input measurements. The error was finally found to be in the
measurement function. Each time a measurement was started, the Keithley KUSB unit was configured
with its setup. This function, provided by Keithley, has a minor memory leak that causes about 14KB of
memory to be used every time the function is called. Over time this demands a great amount of virtual
memory, causing the computer to slow down. The problem was solved by reorganizing the code, making
the configuration call only once.

Although the memory leak was fixed, the program seemed to slow down after a couple of days of
running. The amount of used memory was stable and the program used about 50% of the processor
power. The reduced speed of the program sometimes caused the output to be a little delayed or caused
the frequency of the input measurements to slow down. This again caused some of the measurement data
to have a lower time resolution than wanted. However, the program speed was varying and not all cycles
were affected by the low measurement frequency. Therefore the problem was left unsolved, considered to
be a minor problem.

5.2.2 Fixation Test

The first setup described in the previous chapter is the fixation test (figure 4.2a). The wire was fastened
as described in section 4.1.1. In the top of the frame, a threaded stem was used to adjust the wire so
that it would be tight. The fixation test soon proved itself to be the most work demanding. Each wire
mounted, tended to break after approximately two days of actuation. The wire break was always inside
the upper or lower fastening mechanism, suggesting that the method for fastening the wire is causing
some damage to it.

The first six wires that were tested were unfortunately tested with an erroneous amplifier setup. Two
errors were found that certainly have caused wrong force measurements. The first error was the zero
adjustment of the strain gauge. The bridge had not been properly adjusted so that with no force applied,
the output of the amplifier would be its lower rail. When applying a force, the output would remain at
the lower rail until the strain gauge had a large enough output signal to drive the amplifier above the
lower rail. This caused an offset error, but also infected the calibration values that were calculated.

The second error that was found also concerned the amplifier. The maximum force measured from the
wire with the erroneous setup was 30N. This is three times more than reported in the Flexinol datasheet
[37] and therefore it did not appear as obvious that this value actually was the upper rail of the amplifier.
However, as the first data analysis was done, it became apparent that the maximum value was the same
for every contraction cycle. The gain of the op-amp had been set too high and thus was the output range
of the amplifier too small.

To correct the two errors, a zero adjustment was first done as described in section 4.2.1. Then a
smaller gain was chosen before a new calibration was done. The new setup showed that the real pull
force of the wires was even larger than the first erroneous results. The maximum pull force that was
measured exceeded 40N, more than four times the reported maximum pull force. The pull force reported
in the datasheet of course refers to the recommended pull force.

Although the first six measurements had to be considered invalid in terms of determining pull force
degeneration over time, they were not completely in vain. An important property was uncovered, namely
the lifetime of a wire when loaded to its maximum. The lifetime can be seen in table 5.3 and is given
as number of contraction cycles before the wire breaks. The column of maximal force contains erroneous
results for the first five wires caused by the wrong amplifier setup described above. The delay column
shows the time it takes after the wire is turned on until it reaches a force of 5N. The break point tells
where the wire snapped.

70

Wire Cycles Max force [N] Delay [s] Break Point
1 1969 31.05 1.2 bottom
2 1501 31.06 0.9 top
3 1504 31.04 1.4 top
4 1193 31.05 1.2 bottom
5 1971 31.06 1.1 top
6 512 40.3 0.85 top
7 7876 41.5 0.6 bottom

Table 5.3: Results from testing a fixated Flexinol wire. The wires always broke either in the upper or lower
fastening mechanism

Measurement Cycle

Figure 5.3 shows the measured force of a wire together with its control signal. A small time delay can
be observed between the rising edge of the control signal and the actual contraction start. As described
in section 2.3.2, this is caused by the warm-up time of the Flexinol wire. Analogous, a delay is seen as
the output is turned off, caused by the cooling time of the wire. As the wire reaches its maximum force
of around 40N, the force signal seems to become rather unstable. When the wire is in this state, the
temperature is much higher than normally needed to contract the wire. But because of the applied stress
(fixed wire), the wire cannot contract. The temperature at this point is probably more than 100oC,
making the difference between the wire temperature and its surrounding temperature very large. An
explanation for the unstable behaviour could therefore be that the constantly cooling and heating of the
wire at this point causes some kind of oscillation. It should be noted that four times the recommended
stress is applied to the Flexinol wire at this point.

Figure 5.3: Two contraction cycles of a fixated Flexinol wire. The maximum force of ca 40N shows that Flexinol
is able to exert rather large forces

71

Degeneration

In figure 5.5, the degeneration of Flexinol over time is illustrated. The figure shows the actual pull force
of the wire through about 8000 cycles. Each graph value is the difference in force from the start of a
contraction to the top of the contraction curve. As mentioned above, the signal is rather unstable when
the wire is at its maximum force, this is also reflected by the rather large deviations in the curve. From
cycle 1 to about 3100, a reduction in force is noticed. This was first assumed to be caused by a weakening
of the wire but turned out to be caused by a stretching of the wire. At cycle 3100, the wire was tightened
and as the graph shows, this causes an increase in force. The figure also shows a constant decrease in force
after the tightening which also mainly is caused by a stretching of the wire. Surprisingly, the pull force
of the wire after tightening is almost as large as that of a new wire. The stretching of the wire continues
for each cycle and it would be interesting to see if the stretching converges. During the performed tests,
this was never observed as the wire would break before a trend could be seen. At around cycle 5800, an
external disturbance caused a series of erroneous measurements that should not be evaluated.

Both between cycle 1 and 500 and between cycle 6000 and 7000 some additional noise can be seen on
the curve. This is most likely caused by temperature variations in the surrounding environment. These
variations can be caused by an open window, the central heating of the building or sunshine. However,
regardless of the wire being stretched and an unstable test environment, the wire proves that its pull
force is very large until the point when the wire snaps. All the wires that were tested snapped at either
of its ends. This indicates that the fastening mechanism of the wire is somehow causing damage to the
wire, either at time of fastening, at time of contraction, or both. An attempt was made to improve the
fastening mechanism. A thin copper plate was cut and placed inside the fastening mechanism between
the screws and the Flexinol wire. This did not seem to improve the lifetime of the wire, and the problem
was left unsolved as this only was occurring at this particular test setup with a load greatly exceeding
the recommended limitations of Flexinol. Overcoming this problem could maybe make it possible to test
the fixated wire over a longer period of time. This, however depends on whether or not the rest of the
wire is close to snapping when the fastenings have snapped. Maybe a fastening of the wire with a knot
similar to the clove hitch, seen in figure 5.4, can be used to prevent the fastening mechanism from being
the weakest link. This, however would probably make the fastening mechanism both larger in size and
more complex.

Figure 5.4: A Clove Hitch knot could maybe be used to create a more gentle fastening mechanism for the Flexinol
wires.

In figure 5.6, a detailed view of two contraction curves can be seen. The red curve shows a contraction
cycle after 500 contractions and the blue curve shows contraction cycle after 4500 contractions. One
difference that can be observed is a slightly lower pull force after 4500 cycles than after 500. This may be
caused by a stretched wire, as described above. Some delay in the cooling of the wire can also be seen,
but this is probably due to the time resolution of the measurement software because the slope of the two
cooling curves are near to identical.

As already mentioned, a delay occurs between the rising edge of the output signal and the start of
the contraction. Figure 5.7 shows the time between the rising edge of the output signal and the point
where the force signal is larger than 5N. This can be seen as the reaction time of the wire. The figure
shows many high reaction times that are a result of the time resolution of the measurements. However,
the interesting part of the data is that the reaction time from the correct measurements seem to be stable
around 0.5s− 0.8s over the whole period. This observation together with the observations around figure
5.6 can therefore be used to conclude that only a small, negligible change is done to the transformation
curve of the wire during the test.

72

Figure 5.5: Degeneration of a fixated Flexinol wire over time. The decrease in force is caused by the wire being
stretched

Figure 5.6: Comparison between contraction curve after 500 and after 4500 cycles for a fixated Flexinol wire.
Only very small differences are observed

73

Figure 5.7: reaction time of a fixated Flexinol wire. The curve shows the time from the wire is turned on until
the measured force exceeds 5N. No changes can be observed over time

5.2.3 Degeneration Test

The two degeneration tests are described in section 4.1.2.

Small Load

In the first test, only a small load was supposed to be used to stretch the wire after a contraction. The
control signal for the test is depicted in figure 5.8. First, a weight of 110g was molded in lead and fastened
to the wire. The result of this test clearly shows that the applied weight is to small to stretch the wire
(figure 5.9). During the first hours of operation, the wire stretches less and less after each contraction,
and after one day the Flexinol wire only has about 1.5mm difference between contracted and stretched
state. Table 5.4 shows a survey of the performed tests. The most interesting result is from wire 4, where
48861 cycles were completed. The initial deflection was 41mm and the ultimate deflection was 22.5mm.

Wire Cycles Max deflection [cm] Min deflection [cm]
1 5866 2.9 0
2 7 - -
3 1662 2.9 1.45
4 48861 4.1 2.25

Table 5.4: Results from testing a Flexinol wire with a small load. The fourth run is the first run with a large
enough weight. The very high number of contraction cycles should be noted

A number of washers were then fastened on top of the lead weight, making its total weight 200g. This
was not enough, so another 75g was added. With 275g, the wire could be stretched about 20mm but
was unstable from cycle to cycle. The wire was therefore replaced in case it had been damage through
being contracted for several days (figure 5.9). This seemed to be the case, because after changing wires,
an improvement in stability could be seen. These results can be seen in figure 5.10, where the long
duration of the test also should be noted. The gaps in the data is caused by computer breakdown and

74

power loss during the measurement period. Applying such a small load to the wire seems to cause very
little damage to it. The difference between the contracted state and the stretched state of the wire is
illustrated in figure 5.11 and it can be seen that in contraction cycle 1, the deflection is about 37mm.
The degeneration of the wire is clearly visible between cycle 1 and cycle 15000 where it seems to converge
towards a deflection of about 22.5mm. This amount of deflection seems to be very stable as it is repeated
for the next 30000 cycles.

It is very valuable to know that the wires converge towards a stable deflection rate after a while.
However, with a stable contraction rate of about 22.5mm, only 2.25% deflection is achieved. This has
to be considered very low compared to the initial rate of 3.7% and the specified 4.5 − 5.0%. Another
aspect of this test is the size of the applied weight. The maximum recommended pull force reported by
the manufacturer of Flexinol is 930g. When 275g are needed to stretch the wire, this equals about 1/3
of the maximum, which has to be considered fairly high, limiting the working range.

Figure 5.8: Two contraction cycles for a small load. About 4% contraction is observed for the first two cycles

Heavy Load

The second of the two degeneration tests is similar to the first one, except for the weight being used to
stretch the wire. Again, a weight was molded from lead and trimmed to be ca 930g, the same as the
recommended maximum pull force of the Flexinol wire. The weight was fastened to the end of the wire
and placed on top of a deflection transducer with a return spring. The return spring causes a small error
to the applied weight, but was considered to be negligible. Table 5.5 shows the results from all the tested
wires. The life time of each wire varies very little. However, the average life time of ca 12000 cycles is
about 1/4 of the life time of the above mentioned wire with a small load.

The control signal for the test can be seen in figure 5.12 together with the deflection. By looking at
the time axis, it can be seen that the frequency of this test is the double of the frequency for the light
weight. This is due to the fact that the heavy weight stretches the wire much faster than the light weight
does.

Results from one test can be seen in figure 5.13 and 5.14. As the figures show, a very stable deflection
of about 4.25mm is observed. However, as figure 5.13 shows, the wire is continuously stretched under

75

Figure 5.9: Deflection over time with 110g applied. 110g proved to be insufficient to stretch the Flexinol wire
after a contraction

Figure 5.10: Deflection over time with 275g applied. 275g was enough to stretch the Flexinol wire after a
contraction and also proved not to overload it

76

Figure 5.11: Difference between contracted state and stretched state from figure 5.10. The contraction rate
converges towards 2.25% after 15000 contraction cycles

Wire Cycles Max deflection [cm] Min deflection [cm]
1 11910 4.5 4.1
2 11399 4.4 4.3
3 12994 4.4 4.2
4 11531 4.25 4.0
5 12158 4.3 4.2

Table 5.5: Results from testing a Flexinol wire with a heavy load. Very similar results for all five runs can be
observed. The deflection rates of about 4.5% are equal to the information found in the Flexinol datasheet [37]

the load of the 950g. After about 3 days (5500 cycles) the wire was therefore tightened to keep it inside
the 50mm measuring range of the deflection transducer. Figure 5.14 shows that the deflection transducer
already was at its lower limit, causing a slight increase in deflection when tightening the wire. After
about 11000 cycles, the wire snapped without any warning signs in terms of radical changes in deflection
or speed (figure 5.15).

5.2.4 Flexinol Antagonist

The use of an extra antagonist wire to stretch an agonist wire is described in section 4.1.3. The first
attempt with this method can be seen in figure 5.16. As the graph shows, the agonist wire produces a
small force when actuating. This comes from stretching the cold antagonist wire. However, when the
agonist wire is turned off and the antagonist wire is turned on, a large force is produced. This is because
the agonist has not yet been cooled down while the antagonist starts to stretch it. As a result, both wires
are stretched. This can also be seen be looking at the figure. The figure shows the 8 first cycles of the
test, and during this short time the deflection is reduced from 15mm to 6mm. The maximum deflection
could have been about 25mm as each wire has a length of 50cm. During the same period, the force is
almost halved, also reflecting that the wires have been deformed. A second attempt was therefore done
with a more conservative control signal. Two cycles from this attempt can be seen in figure 5.17. As the

77

Figure 5.12: Two contraction cycles for a heavy weight. A contraction of about 4.25% is observed for the first
two cycles

Figure 5.13: Deflection over time with 950g applied. The Flexinol wire is stretched under this load and had to
be tightened after about 3 days

78

Figure 5.14: Difference between contracted state and stretched state from figure 5.13. Although the wire is
stretched over time, the deflection rate is very constant

Figure 5.15: Delay between rising output and 3cm deflection. This curve also shows that no change in reaction
time can be observed

79

graph shows, much smaller forces are exerted compared to the first attempt, indicating a more gentle use
of the wires. A deflection of 22mm is equivalent to 4.4%, which is a rather good utilization. However, as
figure 5.18 shows, the deflection decreases almost linearly towards 0mm during the first 500 contraction
cycles. Although performing better than the first attempt, this indicates a rather strong deformation of
the wires as a result of the antagonistic behaviour. After about 600 cycles the wires were tightened but
they were deformed rather fast, as the graph shows. At about 3900 cycles, a third attempt was done
to tighten the wires with the same result. Table 5.6 shows results from the tested wires. The two first
wires were unsuccessful setups and therefore, only the third wire shows useful numbers. The maximum
deflection is observed in the first contraction cycle, but as the table shows, after some time, the deflection
is down to 0mm. This is also reflected by the minimal and maximal forces.

Wire Cycles Max
deflection

[cm]

Min
deflection

[cm]

Max force
[N]

Min force
[N]

1 5690 0.5 0 30 0
2 345 0.3 0 30 0
3 5182 2.1 0 15 0

Table 5.6: Results from testing a Flexinol antagonist. The mechanism suffers from unnecessary large forces that
stretches the wires and results in a malfunction

After these attempts the idea of using an active Flexinol antagonist was not further investigated.
This was because of the time demanding and inconvenient assembly of the wires in addition to the rather
poor performance described above. Maybe an even more conservative way of controlling the wires could
prevent the deformation of the wires. However, the contraction cycle described in figure 5.17 is already
containing a delay of 10 seconds between agonist and antagonist. A longer delay would be even more
inconvenient if the Flexinol wires are used for example in a robot hand.

Figure 5.16: Eight contraction cycles for a Flexinol antagonist. Very large changes can be seen during the cycles

80

Figure 5.17: Two contraction cycles for a Flexinol antagonist. A more conservative timing diagram results in
more gentle control with smaller forces being exerted

Figure 5.18: Difference between contracted state and stretched state with Flexinol antagonist. The wires are
deformed very quickly, making the deflection converge to 0mm

81

5.2.5 Spring Antagonist

The use of a spring as antagonist is described in section 4.1.4. It differs from the use of a Flexinol
antagonist in being a passive return force. Two contraction cycles for this test are shown in figure 5.19,
where a force measurement can be observed in addition to the digital output signal and the deflection
signal. The force measurement may seem redundant as it is proportional to the deflection because of the
spring constant. However, it also tells the pretensioning of the spring. The pretensioning is important
as it decides the speed of the stretching, but also how much the wire is stressed. This again, also has
impact on how much the wire is stretched. A large preload of the wire seems to shorten its lifetime but
also causes larger deflections. A smaller preload decreases the deflection slightly, but ensures a slightly
longer life of the wire.

Table 5.7 shows results from the tested wires. Wire 1 was tested with almost no pretensioning,
reflected by the low deflection rate. Both for wire 2 and 3, the pretensioning was increased, resulting in
increased deflection in both cases, but also shorter lives of the wires.

Wire Cycles Max deflection [cm] Min deflection [cm]
1 21497 3.0 2.1
2 20964 3.6 3
3 18836 3.8 3.3

Table 5.7: Results from testing Flexinol with a spring antagonist. Very stable results can be observed for the life
time, but deflection rates are reduced when using a spring as antagonist

Figure 5.20 shows the development in deflection over time. The graph shows clearly that after a short
period of settling, only a very small degeneration of the wire occurs. Although the wire shown in the
figure snapped before a convergence was obvious, the trend of the deflection graph seems to be going
towards a limit of about 32.5mm.

Figure 5.19: Two contraction cycles for spring antagonist. Very gentle control of the wire is achieved. The force
values also reflect this

82

Figure 5.20: Difference between contracted state and stretched state with spring antagonist. It is apparent that
only a small degeneration is done to the wire during 20000 cycles

5.2.6 PWM-Control

The PWM-control is done with two types of feedback, deflection and current.

Deflection Controlled

The PWM-control of the Flexinol wires was first done with a displacement feedback in the regulation loop.
The regulation was performed with the function SET DEFLECTIONS that is a part of the microcontroller
command set, described in section 4.5.4. As described in section 4.1.5, the regulation is done on a single
Flexinol wire with a spring antagonist as return force.

The regulation was done with different regulation factors that are depicted in figure 5.21. The most
apparent observation from the results is the oscillation that occurs in all the figures. The figure shows
that a small and thus, dampening regulation factor such as 10, causes the largest oscillation amplitude
and the lowest oscillation frequency. By increasing the regulation factor to 50, an improvement in the
oscillations is visible. By increasing the regulation factor to 100 and 150, further improvement is observed.
However, by further increasing the factor to 200, minimal improvement is seen. A regulation factor of
150 was therefore chosen as optimal for this regulation test.

A rather large overshoot can also be seen in all the figures. This is due to hysteresis and delay in the
Flexinol wire. This behaviour is further discussed in section 6.2.

Figure 5.22a shows the result from regulating the Flexinol wire to different degrees of contraction.
All plots start with a stretched wire that is contracted to a given degree. Figure 5.22b shows the mean
value of all the regulation steps (steady state) plotted against the amount of contraction. It is clear that
the regulation is able to control the wire to all degrees of contraction when ignoring the oscillations.

Current Controlled

A second regulation was then done with current as feedback in the regulation loop. The regulation was
performed with the function SET CURRENT that is a part of the microcontroller command set, described

83

(a) Regulation factor 10 (b) Regulation factor 50

(c) Regulation factor 100 (d) Regulation factor 150. Chosen as the best factor in
this test

(e) Regulation factor 200

Figure 5.21: Results of PWM control with different regulation factors. Slow oscillations with large amplitude
are seen when using a dampening regulation factor, while for amplifying regulation factors, the oscillations are
faster with smaller amplitude

84

(a) 27 Regulation steps. The regulation needs about 3s
to become stable (with oscillations)

(b) Linearity of regulation. The mean value of each reg-
ulation step from figure (a) is plotted against the wanted
value. The result shows that all degrees of deflection can
be achieved

Figure 5.22: Results from proportional deflection regulation with regulation factor 150

in section 4.5.4. The regulation is performed on the same setup as described above for the displacement
controlled regulation.

Figure 5.23a shows the results from some test measurements to determine the quality of the current
measurements. The curves show the current measurements for different pretension forces of the wires.
Each point on the curves is an average value from 20 current measurements. When not counting the
peak around 7.5%, the curve is monotonic. However, as figure 5.23b shows, rather large deviations are
seen within each calibration curve. Many of the curves are not monotonic around 20% to 80%, which
may cause trouble when regulating. No explanation was found for the peak that is seen around 7.5%
contraction.

(a) Current at different degrees of contraction and with
different pretension forces. Each data point is an aver-
age of 20 measurements

(b) 20 measurements for a wire with 10N pretensioning.
Some of the calibration curves are not monotonic and
may therefore cause problems when regulating

Figure 5.23: Current measurements

Figure 5.24 shows the calibration values that were measured before the actual regulation was tested.
Around 70% to 80%, the curve is non-monotonic, which may cause trouble for the regulation. Only small
differences are measured between 25% and 80%, which also may cause problems. However, no peak was
seen in this curve.

Figure 5.25a shows the results from the regulation. It is clear that the three first regulation steps are
performed correctly. This is reflected by large differences between the steps in the calibration curve from
figure 5.24. However, the next 10 steps can only hardly be distinguished from each other. Slow regulation
and oscillations are observed, but the main problem is that the regulation steps are not correct. This is
also reflected by figure 5.25b, that clearly shows that not all values are regulated correctly. However, the
curve does not tell the entire truth, as it contains the mean values of the rather large oscillations from

85

Figure 5.24: The calibration curve used for the regulation test

figure 5.25a.

5.2.7 Summary

The testing of Flexinol wires in different setups reveals some very important aspects that are left unmen-
tioned in the documentation provided by the manufacturer Dynalloy, Inc.

Force

Flexinol wires have proved to be able to exert very impressive forces. However, when loaded to a max-
imum, the wires have a very short life. This is also informed in the documentation provided by the
manufacturer, where it is stated that the lifetime of Flexinol is shortened when loaded to more than the
recommended maximum pull force. The documentation does not give any hints of how many contraction
cycles to expect from an average wire before it breaks. With a maximum pull force of about 40N the
wires are able to lift about 3119 times their own weight:

Maximal force of Flexinol F = 40N
Density of Flexinol D = 6.45g/cm3

Radius of Flexinol wire R = 0.0254cm/2 = 0.0127cm
Length of Flexinol wire L = 100cm

Volume of Flexinol wire V = π ·R2 · L = π · 0.0127cm2 · 100cm = 0.203cm3

Weight of Flexinol M = V ·D = 0.203cm3 · 6.45g/cm3 ≈ 1.31g = 0.0128N

Pull ratio = F/M = 40N/0.0128N = 3119

Wire Deformation

In use, the wires are deformed and stretched. This behaviour was not expected when driving the wires
gently, but as figure 5.10 shows, this is also the case with a load only slightly heavy enough to stretch

86

(a) 16 Regulation steps. Some of the steps do not settle (b) Linearity of regulation. The mean value of each
regulation step from figure (a) is plotted against the
wanted value. The result shows that only the degrees
of contraction close to no contraction or full contraction
are correctly regulated

Figure 5.25: Results from proportional current regulation of a single Flexinol wire

the wire after a contraction. The deformation of the wire seems to develop faster with a heavier load, as
depicted in figure 5.13. However, the deformation of the wire does not seem to have too much influence
on the deflection rate. The deflection rate seems to be rather stable after some time of settling.

The effect of the wires being stretched is very dependent on the application in which Flexinol is
integrated. In a setting where an object has to be actuated over a given distance, a displacement offset
caused by a stretched wire is highly unwanted. In many applications, this would introduce a demand for
some kind of tightening mechanism. Such a mechanism does not necessarily have to be very advanced,
but compared to only fastening a wire of Flexinol, it is far more complicated. This is for example a huge
drawback in applications concerning multiple Flexinol wires.

In some designs where physical space is not an issue and the number of wires is low, a stretched wire
may not be a problem. However, in small applications like the ElectrostemTM valve presented in section
2.3.2, a replacement would cause a complete disassembly and reassembly of the valve.

Deflection Rate

As mentioned above, the degree of deflection seems to be stable as long as the wire is stretched properly
after each contraction. When stretched with a dead weight of ca 1kg, a deflection rate of about 4.25% can
be expected, when stretched with a load of 300g, 2.25% and when stretched with a spring, about 3.25%
can be expected. This again shows that Flexinol does not fit into all applications. Where a properly
sized reverse force is not available, the wires can not be expected to deliver the specifications given in
the Flexinol datasheet.

5.3 Humanoid Finger Design

The humanoid finger presented in section 4.4 is evaluated in this section. The finger was produced with
a 3D printer in ABS plastic. Each joint is assembled with a 5mm machine screw from each side. Three
flexor tendons and one extensor tendon is routed through their respective tendon channels and fastened
with screws.

5.3.1 Joints

As described in section 4.4, the joints are designed in such a way that the tendons are routed straight
through the pivot point of each joint. This was done to prevent the tendons from distal joints to cause
movement in the joints closer to the hand base. To test this function, a soft spring was connected to
the extensor tendon to extend the finger. Then, combinations of all the flexor tendons were tested. The
design proved to work very well, as no joints were affected by the actuation of other joints.

87

Figure 5.26: Assembled finger mounted on an aluminium tube. The flexor tendons can be seen on the lower side
of each joint. Each joint is actuated about 45◦

5.3.2 Tendons

The tendon channels seems to function good. Very little friction is noticed when actuating the different
joints with hand force. As the three flexor tendons share one tendon channel in the first finger segment,
there was a chance that this could cause problems due to friction and backlash. This neither seems to be
a problem. The way of squeezing the wires in place with a screw also seems to work well. No tendons
have come loose when actuated with hand force or when actuated with Flexinol wires. However, as the
ABS plastic is a rather soft material, the fastening mechanisms can not be expected to withstand many
cycles of assembly and disassembly.

5.3.3 Friction

The surface of the 3D print has a slightly uneven structure that is reflecting the layers and the resolution
of the printer. The finger segments where printed in such a way that these structures should be as small
as possible on the surfaces of the hinge joints. Nevertheless, these surfaces are not totally even and
therefore friction forces are observed. The friction seems to hold back the joint when actuated gently,
causing at first no actuation, then a sudden large movement. This behaviour can partly be omitted by
applying grease to the joint surfaces. However, it may be a better solution to produce the joints with
slightly larger margins between the surfaces or producing the finger in another material.

5.4 Humanoid Finger Application

In this section, the assembled finger is evaluated together with its control electronics and an aluminium
tube representing a forearm, holding muscles and tendons.

5.4.1 Mechanics

As described in section 4.5.1, the finger is mounted on a rectangular aluminium tube. The tube is also
used to fasten Flexinol wires, displacement transducers, force transducers and the control electronics.

The fastening of the finger was done using the four available screw holes in the metacarpal finger
segment (figure 4.19). The finger is positioned in the center of the tube, which ensures a centering of
the exit of the tendon channels. The three flexor tendons are separated like figure 5.27 shows and each
tendon is then connected to one of the three Flexinol wires. From each of the connection points between

88

tendon and wire, a thread is routed around the corresponding radial displacement transducer and then
fastened to a rubber band.

Displacement Transducer

The depth of the radial displacement transducer was almost causing problems. As figure 5.27 shows, no
extra room is left between the displacement transducer and the next wire. Although the physical size of
the transducer is a little larger than wanted, it functions well.

Figure 5.27: Separation of the tendons. The center tendon is routed straight out of the finger while the outer
tendons are separated from the center with two padded machine screws

Force Sensor Bracket

The Flexinol wire that is fastened to the finger tendon in one end is fastened to the force sensor bracket
in the other. The force sensor bracket is printed in ABS plastic, just like the displacement transducer and
the finger. Just as experienced with the finger joints, the uneven structures on the surfaces of the force
bracket caused it to slide in steps rather than smoothly. This introduced some problems when calibrating
the force sensors because the light calibration weights were not heavy enough to overcome the friction
forces. A calibration curve for the force sensors can be seen in figure 5.28.

Figure 5.28: Calibration curve for the Interlink Force Sensor. A non-linear but monotonic behaviour is seen.

89

Elastic Displacement Transducer

As described in section 4.5.1, an elastic displacement transducer was considered as an option. However,
as figure 5.29 shows, the use of such a transducer is non-trivial. In the figure, the green vertical lines mark
each time the elastic transducer was stretched and the black line shows the actual physical stretching. A
negative peak is observed by the first stretching. The peak leasts for about one second before the curve
moves in the correct direction. However, as the graph shows, the transducer does not immediately reflect
the change in displacement. After 10 seconds, the output starts to stabilize, but is slightly increased for
another 15 seconds.

The same behaviour is seen again when the transducer is further stretched at around 32 seconds.
Also when decreasing the amount of stretch at 40 seconds, a negative peak is seen. The following peak
is caused by a mechanical distortion. The fact that such a small distortion causes a great peak in the
measurement indicates that regulation with such feedback can be difficult. In addition to the slow response
of the transducer, the overall performance is therefore considered too inaccurate for the humanoid finger
application.

Figure 5.29: Results from testing of an elastic displacement transducer. The results show that the transducer
suffers from large delays. In addition, negative peaks are generated when the transducer is stretched.

5.4.2 Electronics

The electronics schematic of the finger application is presented in section 4.5.2 and its breadboard real-
isation can be seen in figure 5.30. The prototype was built on a breadboard to be easily expandable in
case of adjustments. The biggest IC is the ATMega32 microcontroller which has a 6-pin programming
connector situated on its right side. The smaller IC is the MAX202 level shifter, used to convert between
TTL and ±12V signals for RS232. On the right side of the picture, a 5V regulator can be seen with
two capacitors for noise filtering of the power supply. On the left side of the picture, three power hexfet
transistors can be seen. These are used to drive the Flexinol wires. The large, white ceramic resistors
are used for current measurements.

The electronic design is not very complex, but functioned well for its purpose as prototype base for
Flexinol wire regulation. The PWM-frequency of the outputs is desirable to keep as high as possible. The
power hexfet transistors that are controlled by the PWM-signal will therefore have to keep up with this

90

frequency. Because of the large gate capacitance of the transistors, a small resistor had to be used to pull
up the gate fast enough. With a too small pull up resistor, this resulted in too large power dissipation
in the resistor which was fried. This experience caused a limitation in the PWM-frequency, resulting in
a lower frequency than wanted.

Figure 5.30: Circuit realised on breadboard. The microcontroller reads sensor data, controls PWM-signals to the
Flexinol wires and communicates with a computer via RS232

5.4.3 Software

In this section, the three different software tools, developed to control the finger, are evaluated. The
computer interface program and the interface for Robotics Studio are redundant. As described below,
this is mainly because Robotics Studio proved to be a framework rather unsuitable for prototyping.

Microcontroller Software

The program running on the microcontroller is described in section 4.5.4. The purpose of the program is
to receive commands via the serial interface of the microcontroller and perform actions accordingly.

The reception of data via the serial interface is done based on interrupts, as described in section
4.5.4. The simplest use of the microprogram is to pass it a command, let it perform an action while
waiting for a return value. This highly sequential way of operation has not caused any problems while
testing the program. However, when the microprogram was set to perform a continual operation such
as regulating one or more wires, a problem occurred. The problem was that the serial communication
with the interface program on the laboratory computer stopped. This happened after sending a number
of different set values to the micro program while at the same time receiving sensor data from it. This
combination of sending and receiving caused the communication to stop although both a send and a
receive buffer are implemented in the microcontroller software. However, when not multiple set values
are sent to the microcontroller, no problems have been encountered.

The most critical part when performing the requested regulation commands is the regulation loop
speed. With the microcontroller running at 14.318MHz, this was never an issue and a prescaler had to
be implemented in the regulation loop to prevent it from returning data over the serial interface to often.

Computer Interface Software

The computer interface for the finger application handles the communication with the microcontroller.
It is an abstraction from the textual input of commands by providing a list of the available commands
and standard values for the command arguments. As described in section 4.5.5, the program lets the user
choose between different command sets, defined in input files. This function proved as very usable when
testing different versions of the microcontroller program.

Except for the above described problem with a halt in the serial communication, no other problems
were encountered. The graph view for continuous sensor data view was very helpful when testing different
regulation settings.

91

Robotics Studio Interface

The interface developed for Microsoft Robotics Studio was an attempt to fit the finger application into an
existing framework for robotic applications as described in section 3.3. However, the framework appeared
as cumbersome in use. When programming only a small service such as in this case, very much extra
work had to be put into the strict definition of the communication and data structure of it. These strict
definitions are of course necessary when dealing with larger systems with many concurrent subsystems,
but in a prototype setting, the overhead caused by the framework was greatly slowing the productivity
down.

However, after defining the interface of the service and implementing its functions, a highly reusable
module is at hand. This is a great benefit for example when different programs use the same hardware
modules. In practice however, it is often desirable to improve such an interface service. With Robotics
Studio, this involves expanding code that already appears as messy when produced by the code generator.
Robotics Studio may be a good choice when developing a large modularized concurrent system, but for
this prototype purpose it simply was too heavy.

92

Chapter 6

Regulation

This chapter focuses closer on the regulation results that were given in the last chapter.

6.1 Finger Regulation

In figure 6.1, the results from regulating a finger can be seen. The curves show the angle of each finger
joint, and it is clear that oscillations are present. Oscillations are already present when regulating one
single wire, as described in the previous chapter. However, the oscillations that occur when controlling
the finger are slower than for one single wire. The shape of the finger oscillation looks more pulse shaped
than the sine shape of the single wire control. This behaviour is caused by the mechanical construction
of the finger as the exact same regulation function is used as for the single wire control.

The surface of the finger joints introduces static friction forces. This can be seen when comparing the
deflection curves in figure 6.1 with the force curves in figure 6.2. When looking at the force and deflection
curve for the PIP-joint at 6s, it is apparent that the force increases at this point, but no deflection is
measured before one second later. The same seems to happen at around 8s when the force decreases.
The PIP-joint starts to stretch when no force is applied to the joint.

6.2 PWM-Controlled

The results from regulation of a single Flexinol wire was given in section 5.2.6. The results revealed that
a control of a wire is possible, but far from trivial. Three factors are causing the non-trivial behaviour.

6.2.1 Transformation Curve

The most obvious factor can be seen by looking at the transformation curve of Flexinol in figure 2.13.
When heating the wire from a cold state, very little change occurs before the wire reaches a temperature
of ca 70◦C. Between 70◦C and 85◦C, the transformation curve is nonlinear, reaching a contraction rate
of about 0.5%. However, the range between 85◦C and 95◦C results in contraction from 0.5% to 3.5%.
This part of the contraction curve spans over 10◦C and controls 3% of the available 4% of contraction.
This means that very small changes in temperature causes very large changes in contraction. At 90◦C,
such changes can come from air turbulence caused by someone passing by, or a window being open. This
behaviour is also reflected by the different curves in figure 5.22. When looking at the four lower steps
and the four upper steps, lower oscillation amplitudes and frequencies can be observed.

To compensate for this behaviour, accurate sensor feedback and current control is needed. By devel-
oping a model for the wire contraction, a better regulation could possibly be done.

6.2.2 Hysteresis

The hysteresis of the Flexinol wires is already mentioned in section 2.3.1 and can clearly be seen in
figure 2.13. The hysteresis can easily be modelled for a complete cycle of heating and cooling, but it
is unclear from the contraction curve what happens if the heating is stopped at around 2% and then
the wire is cooled. Does this lead to a smaller hysteresis or is the behaviour unchanged? This question

93

Figure 6.1: Regulation of a finger where each joint has a set value of 45◦. The curves show the angle of each
joint. Oscillations of about ±10◦ are observed

Figure 6.2: Force measurements from the same regulation as figure 6.1. The oscillations are also seen as changes
in force. The MCP-joint exerts the largest forces because of its tendon fastening

94

is difficult to answer as no temperature measurements have been performed during this thesis due to
technical difficulties and the small size of the wire. The hysteresis behaviour makes it necessary to keep
record of the current state of the wire while regulating. A regulation model will in other words need to
know whether or not it must expect hysteresis behaviour when loaded with a new set point.

6.2.3 Delay

The third factor that makes regulation non-trivial is the delay that occurs after a change in current
and before a change in contraction. The delay is caused by the time needed to heat the wire. When
increasing or decreasing the current flowing through the Flexinol wire, the heating or cooling of the wire
begins immediately, but it takes some time before the process is completed. As the curves in figure 5.21
show, a rather large overshoot can be observed when controlling the wire from 0% contraction to a given
contraction rate. This is caused by the overall delay in the system, including both regulation and wire
delay. The proportional regulation used in section 5.2.6 is probably not the best solution to regulate the
wire, because it does not predict any behaviour like this. It increases the output until it reaches its set
value and then decreases the output to work against the overshoot. However, as this system contains a
rather long delay, more overshoot than wanted is observed. figure 6.3 shows on contraction curve of a
Flexinol wire. A delay of 2.5s is seen between the start and the end of the contraction. This is 2.5 times
longer than specified in the Flexinol datasheet.

Figure 6.3: One contraction cycle of Flexinol with high resolution. A delay of ca 2.5s can be seen when contracting
the wire. This is 2.5 times more than specified in the datasheet

6.3 Regulation Models by Other Authors

As already mentioned, some approaches have already been performed by other authors to investigate the
possibility to regulate the contraction rate of Flexinol.

Grant and Hayward present a working two-stage regulation mechanism in [71]. An antagonistic setup
with two high strain SMA actuators [22] is controlled to exert a specified force. The two-stage controller
first uses a high regulation factor to kick-start the regulation. When a threshold value is reached, a

95

smaller regulation factor is used to fine tune the regulation. The authors report good performance from
step regulation.

Ma and Song present another regulation model in [73] where a PWM-controlling PD-controller (pro-
portional, derivative) is used. No tracking- or step response curves are shown, but the authors report
that they achieve working regulation.

The most recently written paper found is written by Yee Harn Teh and Roy Featherstone [74]. The
authors use a PID-controller (proportional, integral, derivative) in combination with anti-overload and
ant-slack mechanisms to control the force of two antagonistic SMA wires. Good tracking response and
step response is reported.

Song, Chaudhry and Batur present a working setup in [72] that uses a feedforward neural network to
regulate a SMA wire and to reduce hysteresis behaviour.

6.4 Own Regulation Experiments

The oscillations (figure 5.21) that occurred when regulating Flexinol wires were assumed to be caused
either by the PWM-control signal or by the regulation algorithm. A quick experiment was therefore done
to regulate a Flexinol wire manually. The setup is depicted in figure 6.4 and consists of a microcontroller
that reads a voltage signal from a potentiometer. The voltage value (0-5V) is mapped linearly to a pwm
output (0-100% duty cycle) that controls the RN-VN2 dual motor driver [79]. The RN-VN2 is built upon
the motor driver IC VNH2SP30 [80] which delivers a 20kHz output signal.

Figure 6.4: Block diagram of manual regulation. The voltage signal from the potentiometer is mapped directly
to a pwm signal from the motor driver

The manual regulation of the wires proved to work very well. By controlling the current per hand, all
degrees of contraction could be regulated. When touching the test frame during the regulation, vibrations
with high frequency could be sensed, probably reflecting the 20kHz signal of the motor driver. Figure
6.5 shows that different degrees of contraction could be regulated manually.

6.5 Summary

When combining own experiments with examples found in the literature, it is apparent that several
methods can be used to regulate Flexinol. Examples of two-stage P-regulation, PD-regulation, PID-
regulation and neural networks have been seen. However, because SMA wires of different dimensions
have been used, the results are not always easily comparable. Thinner wires will react faster both upon
heating and cooling, but will also exert smaller forces.

96

Figure 6.5: Manual regulation of a Flexinol wire. The curve shows clearly that regulation is feasible

97

98

Chapter 7

Future Work

Flexinol wires have been on the market for several years, but very few real life applications have been
found during this thesis. It seems like little basis research has been done in the field, maybe one of the
reasons that make the inclusion of Flexinol in larger systems rare. This thesis aims to design a humanoid
finger which is to be actuated with Flexinol wires and some tests of Flexinol had to be performed before
the finger could be designed. During the scope of the thesis, the goal was to develop a working finger.
To achieve this goal, some milestones had to be reached faster than with another time perspective.
This chapter therefore focuses on the aspects of the thesis that deserves more attention in addition to
interesting problems that were discovered during development.

7.1 Flexinol Testing

The results from testing of Flexinol wires in a test frame show that this is very time consuming work.
Wires have to be changed and data sets need to be analyzed. As an example for this is the testing with
a small load where one wire lasted for 40 days. To get enough empirical data to conclude exactly how
Flexinol wires can be used in the best way, many more tests should be performed. This would include
building a bigger test frame so that many equal test setups can be run in parallel. Deflection transducers
with a working range of more than 50mm should also be used so that the wires don’t have to be tightened
during runtime. A solution could be to use radial displacement transducers for all wires.

A fastening mechanism should also be developed to fasten the fixated Flexinol wire in a more gentle
way when testing. In this way, more accurate measures of how long the wire lasts can be collected.
Although the use of a Flexinol wire as antagonist was abandoned during this thesis, the concept should
also be closer investigated.

Attempts were made to measure how much a wire had been stretched after it had broken. This proved
to be very difficult as the wires broke in different contraction states. An attempt was made to stretch
the wire and then measure, but this resulted in the wire also breaking other places. This challenge could
maybe be overcome by always measuring the wires in a contracted state, thus not having to stretch the
wire after it is broken. This would reaveal information about how much a wire can be stretched before
it breaks. In this way a better prediction can hopefully be done.

7.2 Regulation

During this thesis, only one regulation approach is done in addition to an successful attempt to manually
regulate Flexinol. A regulation algorithm for a single Flexinol wire should be developed in the future. If
such an algorithm is able to control a single wire without oscillations, chances are good that a finger also
can be regulated.

7.3 Developed Finger

The prototyped finger was printed in ABS-plastic and the results from this process are described in
section 5.3. The finger was designed with a size ratio of 3:1. A second finger should be produced in a

99

1:1 ratio and preferably in metal to get even surfaces to keep friction at a minimum. To achieve the
true movements of the human finger, the MCP-joint should also support adduction and abduction as
described in section 4.4.1. In this way, the kinetic sketch of the finger would be the same as the human
finger except from tendon routing.

Touch sensors or force sensors could be mounted on the inside of the fingers, making grasping opera-
tions possible. By also producing the finger with a rubber like material on the inside, grasping would be
even more feasible. If good control of one finger is achieved, it would be very interesting to see if a whole
hand could be assembled from the fingers. In this case, a thumb should also be developed, a non-trivial
task both mechanically and in terms of regulation.

7.4 Electronics

The electronic circuits built during the thesis were realized on bread board. For a second prototype,
it would be preferable with a smaller realization on a printed circuit board (PCB). It would also be
preferable with a much higher PWM-frequency for the output, alternatively could a motor driver like the
L6205 [81] from STMicroelectronics be used to control the current flowing through the Flexinol wires. In
this way, the current measurements would probably be much more accurate be cause of the elimination
of the PWM-shaped current flow.

100

Chapter 8

Conclusion

This thesis describes the development of a humanoid finger that is actuated with three Flexinol artificial
muscle fibers. The goal is to investigate whether or not Flexinol wires are suitable as actuators in such
an application an how well they perform. This conclusion summarizes the answers to the problems posed
at the end of the introduction chapter.

� Does Flexinol stand the long time use as a robot hand actuator?

The thesis starts with an investigation of the physical long term properties of Flexinol. Different tests
are performed that reveal interesting behaviours not published by the manufacturer. First of all, Flexinol
wires are deformed after some time of actuation. An accurate amount could not be measured, but for a
wire loaded to its maximum, a deformation of about 1% could be observed after a week of actuation. A
positive observation while testing is that the wires exert even higher forces than given the datasheet. All
in all, the testing of Flexinol revealed that the wires can be used as actuators in robotics, but that care
should be taken not to overload or underload them. The stretching force is 1/3 of the maximum allowed
force, making the dynamic work range of the wires somewhat limited.

� Are the properties of Flexinol changing over time?

Except for the deformation of the Flexinol wire, only small changes are seen when the wire is properly
stretched after each contraction. This includes very little decrease in strain rate and contraction speed.
This observation is positive when looking solely on whether or not Flexinol is suitable as a robotic
actuator. However, this observation also makes it difficult to predict when a wire is about to break, as
no properties are dramatically changing before the break occurs.

� Is it possible to regulate the contraction of Flexinol when used as actuator for a humanoid finger?

The first attempt to regulate a Flexinol wire is done on a single wire with a PWM signal from an
ATMega32 microcontroller. The results show clearly that regulation of the wire is possible. However,
the proportional regulation in use causes some oscillations that leave room for improvement.

A humanoid finger is then designed and prototyped with a 3D printer. The finger has a tendon
routing scheme that makes each joint independent of each other. A control mechanism is implemented in
an ATMega32 microcontroller and a displacement transducer is developed for each joint. The regulation
described above is then used to regulate the three joints of the finger individually. The results show that
the oscillations described above are amplified through friction in the finger.

Although some difficulties are uncovered regarding regulation of the finger, the results show that a
regulation of Flexinol is possible with a more sophisticated regulation loop. This is also seen when looking
at the work of other authors that have applied PID-regulation and Neural Networks successfully.

� Is it possible to improve the strain rate of Flexinol?

This question is not directly answered through practical experience. However, a practical example
was given in the background chapter from the author of the paper Design of shape memory alloy actuator
with high strain and variable structure control [22]. This gear mechanism is reported to improve the strain
rate of Flexinol to 18% instead of the original 4.5%. This is a great improvement, that makes the use of
Flexinol in different applications possible. However, the gear makes the size of the actuator very large
compared to a single wire.

101

� Is it possible to use multiple Flexinol wires in parallel?

Whether or not a parallel use of Flexinol wires is possible is not answered in this thesis through experi-
ments. However, the experiences gained through experiments with single Flexinol wires have shown that
this may be complicated. In many setups, variances are seen between different wires regarding how fast
and how much they are stretched. These differences are mainly caused by the use of different loads for the
wires. This implicates that in a parallel setup, all wires should be equally loaded. To achieve this, a very
accurate and homogenous fastening of each wire has to be performed. In [21], a parallel bundle actuator
is presented. However, the article does not report whether or not the parallel wires behave homogenous.

102

Bibliography

[1] K.B. Fite, T.J. Withrow, Xiangrong Shen, K.W. Wait, J.E. Mitchell, and M. Goldfarb. A gas-
actuated anthropomorphic prosthesis for transhumeral amputees. Robotics, IEEE Transactions on,
24(1):159–169, Feb. 2008.

[2] Kathryn J. De Laurentis and Constantinos Mavroidis. Mechanical design of a shape memory alloy
actuated prosthetic hand. IOS Press, Technology and Health Care, 10(2):91–106, 2002.

[3] B. Massa, S. Roccella, M.C. Carrozza, and P. Dario. Design and development of an underactuated
prosthetic hand. In Robotics and Automation, 2002. Proceedings. ICRA ’02. IEEE International
Conference on, volume 4, pages 3374–3379 vol.4, 2002.

[4] Kenji Kaneko, Kensuke Harada, and Fumio Kanehiro. Development of multi-fingered hand for
life-size humanoid robots. In ICRA, pages 913–920. IEEE, 2007.

[5] Kiyoshi Hoshino and Ichiro Kawabuchi. Mechanism of humanoid robot arm with 7 dofs having
pneumatic actuators. IEICE Trans Fundamentals, E89-A(11):3290–3297, 2006.

[6] Naoki Fukaya, Shigeki Toyama, Tamim Asfour, and Rdiger Dillmann. Design of the tuat/karlsruhe
humanoid hand, May 17 2000.

[7] Shadow Robot Company. Design of a dextrous hand for advanced clawar applications
www.shadowrobot.com/downloads/dextrous hand final.pdf.

[8] A. Kargov, T. Asfour, C. Pylatiuk, R. Oberle, H. Klosek, S. Schulz, K. Regenstein, G. Bretthauer,
and R. Dillmann. Development of an anthropomorphic hand for a mobile assistive robot. Rehabil-
itation Robotics, 2005. ICORR 2005. 9th International Conference on, pages 182–186, June-1 July
2005.

[9] H. Kawasaki, T. Komatsu, and K. Uchiyama. Dexterous anthropomorphic robot hand with dis-
tributed tactile sensor: Gifu hand ii. Mechatronics, IEEE/ASME Transactions on, 7(3):296–303,
Sep 2002.

[10] Bertrand Tondu, Serge Ippolito, Jérémie Guiochet, and A. Daidie. A seven-degrees-of-freedom robot-
arm driven by pneumatic artificial muscles for humanoid robots. I. J. Robotic Res, 24(4):257–274,
2005.

[11] Bielefeld University. www.techfak.uni-bielefeld.de/ags/ni/projects/m6setup/hand.html.

[12] B. Almasri and F. B. Ouezdou. New design of one motor driven under actuated humanoid hand.
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, pages
1491–1496, Oct. 29 2007-Nov. 2 2007.

[13] Karsten Berns, Tamim Asfour, and Rüdiger Dillmann. Armar an anthropomorphic arm for humanoid
service robot. In ICRA, pages 702–707, 1999.

[14] Tamim Asfour, Karsten Berns, and Rüdiger Dillmann. The humanoid robot armar: Design and
control. pages 7–8, 2000.

[15] T. Dutta and T. Chau. A feasibility study of flexinol as the primary actuator in a prosthetic hand.
In IEEE CCECE 2003, Canadian Conference on Electrical and Computer Engineering, volume 3,
pages 1449–1452 vol.3, 2003.

103

http://www.shadowrobot.com/downloads/dextrous_hand_final.pdf
http://www.techfak.uni-bielefeld.de/ags/ni/projects/m6setup/hand.html

[16] F. Gori, D. Carnevale, A. Doro Altan, S. Nicosia, and Pennestŕı. A new hysteretic behavior in the
electrical resistivity of flexinol shape memory alloys versus temperature. International Journal of
Thermophysics, 27(3):866–879, May 2006.

[17] H.H. Selden, B.; Kyu-Jin Cho; Asada. Segmented binary control of shape memory alloy actuator
systems using the peltier effect. Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, 5:4931–4936 Vol.5, 26 April-1 May 2004.

[18] M G Faulkner T B Wolfe (née Bunton) and J Wolfaardt. Development of a shape memory alloy
actuator for a robotic eye prosthesis. Smart Materials and Structures, 14(4):759–768, 2005.

[19] W M Ostachowicz A J Zak, M P Cartmell and M Wiercigroch. One-dimensional shape memory
alloy models for use with reinforced composite structures. Smart Materials and Structures, 12(3):
338–346, 2003.

[20] Pavel L. Potapov and Edson P. Da Silva. Time response of shape memory alloy actuators. Journal
of Intelligent Material Systems and Structures, 11(2):125–134, 2000.

[21] Michael J. Mosley and Constantinos Mavroidis. Design and dynamics of a shape memory alloy wire
bundle actuator, 1999.

[22] V. Grant, D.; Hayward. Design of shape memory alloy actuator with high strain and variable
structure control. Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference
on, 3:2305–2312 vol.3, 1995.

[23] Wikipedia. Hand en.wikipedia.org/wiki/Hand, Aug 2008.

[24] Wikipedia. Muscle en.wikipedia.org/wiki/Muscle, Oct 2008.

[25] Johannes Sobotta. Atlas of Human Anatomy, Volume 1 Head, Neck, Upper Limb. Urban & Fischer,
2001.

[26] John Lin, Ying Wu, and T.S. Huang. Modeling the constraints of human hand motion. Human
Motion, 2000. Proceedings. Workshop on, pages 121–126, 2000.

[27] Gates Corporation. Introduction to hydraulics, www.gates.com/common/downloads-
/files/Gates/autoEducation/428-7153.pdf.

[28] S. Schulz, C. Pylatiuk, and G. Bretthauer. A new ultralight anthropomorphic hand. In Robotics
and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 3, pages
2437–2441 vol.3, 2001.

[29] Jozef Barycki, Miroslaw Ganczarek, Waclaw Kollek, Tadeusz Mikulczynski, and Zdzislaw Samsonow-
icz. Performances of high-speed pneumatic drive with self-acting impulse valve. Mechanism and
Machine Theory, 39(6):657–663, June 2004.

[30] F. Oaerden and D. Lefeber. Pneumatic artificial muscles: actuators for robotics and automation.
European Journal of Mechanical and Environmental Engineering, 47:11–21, 2002.

[31] Hitec RCD. Servo list, www.hitecrcd.com/product file/file/124/Servo Chart.pdf.

[32] Hitec RCD. Datasheet hitec hsr-8498hb, www.hitecrcd.com/product file/file/109/HSR-
8498HB GENERAL SPECIFICATION 050623.pdf.

[33] Johnson Electric. Datasheet ledex tubular solenoids, www.ledex.com/ltr2/access.php?file=pdf
/Tubular Section M.pdf.

[34] Dialight BLP. Datasheet black night series 124, www.blpcomp.com/products
/datasheet/bkseries124.pdf.

[35] C. Mavroidis. Development of advanced actuators using shape memory alloys and electrorheological
fluids. Research in Nondestructive Evaluation, 14(1):1–32, January 2002.

[36] Dynnaloy, Inc. Flexinol actuator wire heat curves, www.dynalloy.com/docs/25ksi90C1.pdf.

104

http://en.wikipedia.org/wiki/Hand
http://en.wikipedia.org/wiki/Muscle
http://www.gates.com/common/downloads/files/Gates/autoEducation/428-7153.pdf
http://www.gates.com/common/downloads/files/Gates/autoEducation/428-7153.pdf
http://www.hitecrcd.com/product_file/file/124/Servo_Chart.pdf
http://www.hitecrcd.com/product_file/file/109/HSR-8498HB_GENERAL_SPECIFICATION_050623.pdf
http://www.hitecrcd.com/product_file/file/109/HSR-8498HB_GENERAL_SPECIFICATION_050623.pdf
http://www.ledex.com/ltr2/access.php?file=pdf/Tubular_Section_M.pdf
http://www.ledex.com/ltr2/access.php?file=pdf/Tubular_Section_M.pdf
http://www.blpcomp.com/products/datasheet/bkseries124.pdf
http://www.blpcomp.com/products/datasheet/bkseries124.pdf
http://www.dynalloy.com/docs/25ksi90C1.pdf

[37] Dynnaloy, Inc. Technical characteristics of flexinol actuator wire,
www.dynalloy.com/docs/TCF1140RevD.pdf.

[38] R.A. Russell and R.B. Gorbet. Improving the response of sma actuators. Robotics and Automation,
1995. Proceedings., 1995 IEEE International Conference on, 3:2299–2304 vol.3, May 1995.

[39] N. Troisfontaine, P. Bidaud, and M. Larnicol. Optimal design of micro-actuators based on sma wires.
Smart Material Structures, 8:197–203, April 1999.

[40] N. Lakhkar, M. Hossain, and D. Agonafer. Cfd modeling of a thermoelectric device for electronics
cooling applications. Thermal and Thermomechanical Phenomena in Electronic Systems, 2008.
ITHERM 2008. 11th Intersociety Conference on, pages 889–895, May 2008.

[41] Custom Thermoelectric. Thermoelectric cooler 00711-5l31-03ca
www.customthermoelectric.com/tecs/pdf/00711-5L31-03CA spec sht.pdf.

[42] KRYOTHERM. Thermoelectric cooler snowball-71 www.eureca.de/pdf/cooling/peltier-
elements/SnowBall-71.pdf.

[43] Dynnaloy, Inc. Information on the electrostem® valve, www.dynalloy.com/docs/electrostem.pdf.

[44] Jonathan W. Mills. Stiquito: A small, simple, inexpensive hexapod robot part 1. locomotion and
hard-wired control. Technical report, Computer Science Department; Indiana University; Blooming-
ton, Indiana 47405, April 21 1999.

[45] J.M. McClain, A.; Conrad. Software design of the stiquito micro robot. Proceedings IEEE Southeast
Con, 8-10 April 2005., pages 143–147, 2005.

[46] Alberto Paiva and Marcelo Amorim Savi. An overview of constitutive models for shape memory
alloys. Mathematical Problems in Engineering, 2006:30 pages, 2006.

[47] Qin Chang-jun, Ma Pei-sun, and Yao Qin. A prototype micro-wheeled-robot using sma actuator.
Sensors and Actuators A: Physical, 113(1):94–99, June 2004.

[48] Technicsche Universität Darmstadt. Elektroaktive polymere, www.emk.tu-
darmstadt.de/institut/fachgebiete/m ems/forschung/dielektrische polymeraktoren.

[49] Yoseph Bar-Cohen. Bionic humans using eap as artificial muscles reality and challenges. International
Journal of Advanced Robotic Systems, 1(3):217–222, November 08 2004.

[50] Kentaro Takagi, Masanori Yamamura, Zhi-Wei Luo, Masaki Onishi, Shinya Hirano, Kinji Asaka,
and Yoshikazu Hayakawa. Development of a rajiform swimming robot using ionic polymer artificial
muscles. Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages 1861–
1866, Oct. 2006.

[51] J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R.
Lafontaine, P.A. Wieringa, and I.W. Hunter. Artificial muscle technology: physical principles and
naval prospects. Oceanic Engineering, IEEE Journal of, 29(3):706–728, July 2004.

[52] Jaewook Ryu, Younkoo Jeong, Younghun Tak, Byungmok Kim, Byungkyu Kim, and Jong-Oh Park.
A ciliary motion based 8-legged walking micro robot using cast ipmc actuators. Micromechatronics
and Human Science, 2002. MHS 2002. Proceedings of 2002 International Symposium on, pages 85–
91, 2002.

[53] N.N. Pak, S. Scapellato, G. La Spina, G. Pernorio, A. Menciassi, and P. Dario. Biomimetic design
of a polychaete robot using ipmc actuator. Biomedical Robotics and Biomechatronics, 2006. BioRob
2006. The First IEEE/RAS-EMBS International Conference on, pages 666–671, 0-0 0.

[54] M. Shahinpoor, T. Xue, and J. O. Simpson. Ionic polymer-metal composites (ipmc) as biomimetic
sensors and actuators, April 19 2001.

[55] Shuxiang Guo, T. Fukuda, and K. Asaka. A new type of fish-like underwater microrobot. Mecha-
tronics, IEEE/ASME Transactions on, 8(1):136–141, March 2003.

105

http://www.dynalloy.com/docs/TCF1140RevD.pdf
http://www.customthermoelectric.com/tecs/pdf/00711-5L31-03CA_spec_sht.pdf
http://www.eureca.de/pdf/cooling/peltier-elements/SnowBall-71.pdf
http://www.eureca.de/pdf/cooling/peltier-elements/SnowBall-71.pdf
http://www.dynalloy.com/docs/electrostem.pdf
http://www.emk.tu-darmstadt.de/institut/fachgebiete/m_ems/forschung/dielektrische_polymeraktoren
http://www.emk.tu-darmstadt.de/institut/fachgebiete/m_ems/forschung/dielektrische_polymeraktoren

[56] Dominiek Reynaerts and Hendrik Van Brussel. Design aspects of shape memory actuators. Mecha-
tronics, 8(6):635–656, August 1998.

[57] Anaheim Automation. Stepper sealed high torque motor - 42n65 series
www.anaheimautomation.com/stepper-sealed-high-torque-motor-42N65.aspx.

[58] Wikipedia. Power-to-weight ratio en.wikipedia.org/wiki/Power-to-weight ratio, Oct 2008.

[59] K. Ikuta. Micro/miniature shape memory alloy actuator. Robotics and Automation, 1990. Proceed-
ings., 1990 IEEE International Conference on, pages 2156–2161 vol.3, May 1990.

[60] Y. Bar-Cohen, T. Xue, M. Shahinpoor, J. O. Simpson, and J. Smith. Low-mass muscle actuators
using electroactive polymers (eap). Smart materials and technologies; Proceedings of the Meeting,
San Diego, CA; UNITED STATES; 4-5 Mar., 3324:218–223, July 1998.

[61] John D. Madden, Ryan A. Cush, Tanya S. Kanigan, and Ian W. Hunter. Fast contracting polypyrrole
actuators. Synthetic Metals, 113(1-2):185–192, June 2000.

[62] John D. Madden, Peter G. Madden, and Ian W. Hunter. Polypyrrole actuators: modeling and
performance. Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices,
4329(1):72–83, 2001.

[63] Ledex. Datasheet ledex low profile 8ecm www.ledex.com/ltr2/access.php?file=pdf/LowPro
file 8ECM.pdf.

[64] Ledex. Datasheet ledex pull tubular 13x14mm www.ledex.com/ltr2/access.php?file=pdf/Tubu
lar 13x14 Pull.pdf.

[65] RDP Group. D5w submersible lvdt displacement transducer www.rdpe.com/ex/d5w.htm.

[66] RDP Group. How it works - lvdt www.rdpe.com/displacement/lvdt/lvdt-principles.htm.

[67] Interlink Electronics. Force sensing resistor www.interlinkelectronics.com/force sensors/technolo
gies/fsr.html.

[68] Atmel. Datasheet atmel avr atmega32, www.atmel.com/dyn/resources/prod documents
/doc2503.pdf.

[69] Keithley Instruments Inc. Model kusb-3100 user’s manual www.keithley.com/data?asset=50306.

[70] Microsoft. Microsoft robotics studio user guide, msdn.microsoft.com/en-us/library/bb483024.aspx.

[71] D. Grant and V. Hayward. Constrained force control of shape memory alloy actuators. Robotics and
Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on, 2:1314–1320 vol.2,
2000.

[72] G. Song, V. Chaudhry, and C. Batur. Precision tracking control of shape memory alloy actuators
using neural networks and a sliding-mode based robust controller. Smart Material Structures, 12:
223–231, April 2003.

[73] N. Ma and G. Song. Control of shape memory alloy actuator using pulse width modulation. Smart
Material Structures, 12:712–719, October 2003.

[74] Yee Harn Teh and Roy Featherstone. An architecture for fast and accurate control of shape memory
alloy actuators. The International Journal of Robotics Research, 27(5):595–611, 2008.

[75] Infineon. Datasheet bss98 n-channel sipmos small-signal transistor
www.infineon.convergy.de/upload/documents/techdoc/GF 52/bss98.pdf.

[76] International Rectifier. Datasheet irf95420n single p-channel hexfet power mosfet
www.irf.com/product-info/datasheets/data/irf9540n.pdf.

[77] Keithley Instruments Inc. Dataacq sdk user’s manual www.keithley.com/data?asset=50242.

[78] Maxim IC. Datasheet for max202 datasheets.maxim-ic.com/en/ds/MAX200-MAX213.pdf.

106

http://www.anaheimautomation.com/stepper-sealed-high-torque-motor-42N65.aspx
http://en.wikipedia.org/wiki/Power-to-weight_ratio
http://www.ledex.com/ltr2/access.php?file=pdf/LowProfile_8ECM.pdf
http://www.ledex.com/ltr2/access.php?file=pdf/LowProfile_8ECM.pdf
http://www.ledex.com/ltr2/access.php?file=pdf/Tubular_13x14_Pull.pdf
http://www.ledex.com/ltr2/access.php?file=pdf/Tubular_13x14_Pull.pdf
http://www.rdpe.com/ex/d5w.htm
http://www.rdpe.com/displacement/lvdt/lvdt-principles.htm
http://www.interlinkelectronics.com/force_sensors/technologies/fsr.html
http://www.interlinkelectronics.com/force_sensors/technologies/fsr.html
http://www.atmel.com/dyn/resources/prod_documents/doc2503.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2503.pdf
http://www.keithley.com/data?asset=50306
http://msdn.microsoft.com/en-us/library/bb483024.aspx
http://www.infineon.convergy.de/upload/documents/techdoc/GF_52/bss98.pdf
http://www.irf.com/product-info/datasheets/data/irf9540n.pdf
http://www.keithley.com/data?asset=50242
http://datasheets.maxim-ic.com/en/ds/MAX200-MAX213.pdf

[79] robotikhardware.de. Datasheet www.shop.robotikhardware.de/shop/catalog/product info.php?
cPath=65&products id=112.

[80] STMicroelectronics. Datasheet fully integrated h-bridge motordriver
www.st.com/stonline/products/literature/ds/10832/vnh2sp30-e.pdf.

[81] STMicroelectronics. Datasheet for l6205 motor driver www.st.com/stonline/products/literature/ds/7616
/l6205.htm.

107

http://www.shop.robotikhardware.de/shop/catalog/product_info.php?cPath=65\&products_id=112
http://www.shop.robotikhardware.de/shop/catalog/product_info.php?cPath=65\&products_id=112
http://www.st.com/stonline/products/literature/ds/10832/vnh2sp30-e.pdf
http://www.st.com/stonline/products/literature/ds/7616/l6205.htm
http://www.st.com/stonline/products/literature/ds/7616/l6205.htm

108

Appendix A

Code attachment

A.1 Software for Test Frame Control and Measurement

The below code is the implementation of the program described in section 4.3.1. An evaluation of the
program was given in section 5.2.1.

Listing A.1: Program Loader (Program.cs)

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Linq ;
4 using System . Windows . Forms ;
5
6 namespace f l ex ino lRiggSansRS {
7 stat ic c lass Program {
8 /// <summary>
9 /// The main entry point f o r the app l i c a t i on .

10 /// </summary>
11 [STAThread]
12 stat ic void Main () {
13 Appl i cat ion . Enab leVi sua lSty l e s () ;
14 Appl i cat ion . SetCompatibleTextRenderingDefault (f a l s e) ;
15 Appl i cat ion . Run(new Flex ino lRigg ()) ;
16 }
17 }
18 }

Listing A.1: Program Loader (Program.cs)

Listing A.2: Main program (FlexinolRigg.cs)

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . ComponentModel ;
4 using System . Data ;
5 using System . Drawing ;
6 using System . Text ;
7 using System . Windows . Forms ;
8 using System . Diagnos t i c s ;
9

10 namespace f l ex ino lRiggSansRS {
11 public p a r t i a l c lass Flex ino lRigg : Form {
12 public string ve r s i on = ” Flex ino lRigg v1 . 0 ” ;
13
14 private double [] l a s tA in = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
15 private bool [] lastDout = { fa lse , fa lse , fa lse , fa lse , fa lse , fa lse , fa lse , f a l s e } ;
16 private double [] nu l lAin = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
17
18 private ngraph [] graphs = new ngraph [5] ;
19 private Color [] l i n e c o l o r s = new Color [] {
20 Color . Red ,
21 Color . Blue ,
22 Color . Green ,
23 Color . Black ,
24 Color . Purple ,
25 Color . Yellow ,
26 Color . Brown ,
27 Color . Magenta ,
28 Color . Cyan ,
29 Color . DarkGray ,
30 Color . Orange ,
31 Color . LightGray } ;
32
33 private setup setup ;
34 private DataGridView [] dg ;
35 private GroupBox [] gb ;
36 private Button [] btnZero ;
37 private dataWriter wr i t e r ;
38
39 private Kusb3100 kusb ;
40 private bool doMeasurementLoop = f a l s e ;

109

41 private bool doReloadDoutProg = f a l s e ;
42 private bool [] r e loadIndex = new bool [6] ;
43
44 public Flex ino lRigg () {
45 In i t ia l i zeComponent () ;
46
47 setup = new setup (”c :\\ Serv iceSetup\\ f l ex ino lFrame . txt ”) ;
48 }
49
50 private void Flex ino lRigg Load (object sender , EventArgs e) {
51 this . Text = ver s i on ;
52 dg = new DataGridView [] { dg1 , dg2 , dg3 , dg4 , dg5 } ;
53 gb = new GroupBox [] { grpWire1 , grpWire2 , grpWire3 , grpWire4 , grpWire5 } ;
54 btnZero = new Button [] { btnZero1 , btnZero2 , btnZero3 , btnZero4 , btnZero5 } ;
55
56 this . FormClosing += new FormClosingEventHandler (FlexinolRigg FormClos ing) ;
57 try {
58 kusb = new Kusb3100 () ;
59 } catch (Exception ex) {
60 System . Windows . Forms . MessageBox . Show(”Connection to Keith ley KUSB−3100 f a i l e d : ” + ex . Message ,

” Error ” , System . Windows . Forms . MessageBoxButtons .OK) ;
61 this . Close () ;
62 }
63
64 int c o l o r c n t = 0 ;
65
66 int w = panGraph . Width / 3 ;
67 int h = panGraph . Height / 2 ;
68
69 string [] p r e f i x = new string [5] ;
70
71 for (int i = 0 ; i < 5 ; i++) {
72 dg [i] . RowCount = setup . g e t In t eg e r (” wire ” + i + ” cnt ”) ;
73 gb [i] . Text = setup . g e tS t r ing (” wire ” + i + ”name”) ;
74 p r e f i x [i] = setup . g e tS t r ing (” wire ” + i + ” . p r e f i x ”) + ” ” ;
75 string [] names = new string [dg [i] . RowCount] ;
76 double [] va lues = new double [dg [i] . RowCount] ;
77
78 for (int j = 0 ; j < dg [i] . RowCount ; j++){
79 dg [i] [0 , j] . Value = setup . g e tS t r ing (” wire ” + i + ” . ” + j) ;
80 dg [i] [1 , j] . Value = ”” ;
81 names [j] = setup . g e tS t r ing (” wire ” + i + ” . ” + j) ;
82 c o l o r c n t ++;
83 va lues [j] = 0 . 0 ;
84 }
85 btnZero [i] . C l i ck += btnZero Cl ick ;
86
87 graphs [i] = new ngraph (
88 names ,
89 se tup . g e t In t eg e r (”xmax”) ,
90 se tup . g e tS t r ing (” wire ” + i + ”name”) + ” ([cm] / [N] / [V]) ” ,
91 se tup . g e tS t r ing (” dump folder ”) + i + ” . png”) ;
92
93
94 i f (i < 3) {
95 panGraph . Contro ls .Add(graphs [i]) ;
96
97 graphs [i] . Location = new Point (w * i , 0) ;
98 }
99 else {

100 panGraph . Contro ls .Add(graphs [i]) ;
101 graphs [i] . Location = new Point (w * (i−3) , h) ;
102 }
103
104 graphs [i] . S i z e = new S i ze (w, h) ;
105 // graphs [i] . addValues (values , DateTime .Now) ;
106 }
107
108 wr i t e r = new dataWriter (p re f i x , s e tup . g e t In t eg e r (” f i l i n t e r v a l l ”) , s e tup . g e tS t r ing (” da ta f o l d e r ”)) ;
109
110 l s t S t a t u s . Location = new Point (panGraph . Le f t + w * 2 + 35 , panGraph . Top + h + 37) ;
111 l s t S t a t u s . Height = graphs [0] . Height − 59 ;
112 l s t S t a t u s . Width = graphs [0] . Width − 49 ;
113 l s t S t a t u s . BorderStyle = BorderStyle . F ixedS ing le ;
114
115
116 se tS ta tu s (” FlexinolRiggSansRS loaded ”) ;
117
118 }
119
120 void FlexinolRigg FormClos ing (object sender , FormClosingEventArgs e) {
121 i f (doMeasurementLoop) e . Cancel = true ;
122 Debug . WriteLine (”FormClosing (” + e . Cancel . ToString () + ”) ”) ;
123 i f (e . Cancel) s e tS ta tu s (”Stop measurement be fo r e c l o s i n g the form”) ;
124 }
125
126 // de l ega t e void SetStatusCal lback (s t r i n g s ta tu s) ;
127 private void s e tS ta tu s (string s t a tu s) {
128 /* i f (l s t S t a t u s . InvokeRequired) {
129 SetStatusCal lback d = new SetStatusCal lback (s e tS ta tu s) ;
130 l s t S t a t u s . Invoke (d , new ob j ec t [] { s t a tu s }) ;
131 } e l s e {
132 */
133 s ta tu s = DateTime .Now + ” − ” + sta tu s ;
134 l s t S t a t u s . Items . I n s e r t (0 , s t a tu s) ;
135
136 while (l s t S t a t u s . Items . Count > 50) {
137 l s t S t a t u s . Items . RemoveAt(l s t S t a t u s . Items . Count − 1) ;
138 }
139 //}
140 }
141
142 private void btnZero Cl ick (object sender , EventArgs e) {
143 int i = Array . IndexOf (btnZero , (Button) sender) ;
144
145 int chnum ;
146 string ch ;
147
148 for (int j = 0 ; j < se tup . g e t In t eg e r (” wire ” + i + ” cnt ”) ; j++) {
149 ch = setup . g e tS t r ing (se tup . g e tS t r ing (” wire ” + i + ” . ” + j + ” ch ”) + ” ch ”) ;
150 i f (ch . StartsWith (”Ain”)) {
151 chnum = int . Parse (ch . Substr ing (3 , 1)) ;
152 nul lAin [chnum] = las tAin [chnum] ;

110

153 }
154 }
155 }
156
157 private void setValue (string [] v , int i) {
158 for (int j = 0 ; j < dg [i] . RowCount ; j++) dg [i] [1 , j] . Value = v [j] ;
159 }
160
161 private void startToolStr ipMenuItem Cl ick (object sender , EventArgs e) {
162 doMeasurement () ;
163 }
164
165 private void stopToolStr ipMenuItem Click (object sender , EventArgs e) {
166 stopToolStripMenuItem . Enabled = f a l s e ;
167 doMeasurementLoop = f a l s e ;
168 }
169
170 private void exitProgramToolStripMenuItem Click (object sender , EventArgs e) {
171 this . Close () ;
172 }
173
174
175 private void doMeasurement () {
176 for (int i = 0 ; i < 6 ; i++) re loadIndex [i] = f a l s e ;
177
178 se tS ta tu s (”Measurement s t a r t ed ”) ;
179
180 startToolStr ipMenuItem . Enabled = f a l s e ;
181 stopToolStripMenuItem . Enabled = true ;
182 exitProgramToolStripMenuItem . Enabled = f a l s e ;
183 reloadDoutValuesToolStripMenuItem . Enabled = true ;
184
185 reloadDoutValuesForWire1ToolStripMenuItem . Enabled = true ;
186 reloadDoutValuesForWire2ToolStripMenuItem . Enabled = true ;
187 reloadDoutValuesForWire3ToolStripMenuItem . Enabled = true ;
188 reloadDoutValuesForWire4ToolStripMenuItem . Enabled = true ;
189 reloadDoutValuesForWire5ToolStripMenuItem . Enabled = true ;
190
191 doMeasurementLoop = true ;
192 int mean ms = setup . g e t In t eg e r (”mean ms”) ;
193 int per iode ms = setup . g e t In t eg e r (” per iode ms ”) ;
194
195
196 setup doutsetup = new setup (”c :\\ Serv iceSetup\\ f lexinolFrameDoutProg . txt ”) ;
197 string [] progs = new string [6] ;
198
199 for (int i = 0 ; i < 6 ; i++) progs [i] = doutsetup . g e tS t r ing (” wi r e ” + i) ;
200 kusb . setDoutProgs (progs) ;
201
202 double f l e x i n o l v d d = setup . getDouble (” f l e x i n o l v d d ”) ;
203 double [] analogIn = {0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} ;
204
205 int wirecnt = setup . g e t In t eg e r (” wirecnt ”) ;
206 int [] l engths = new int [w irecnt] ;
207 int max = 0 ;
208 for (int i = 0 ; i < l engths . Length ; i++) {
209 l engths [i] = setup . g e t In t eg e r (” wire ” + i + ” cnt ”) ;
210 max = Math .Max(l engths [i] , max) ;
211 }
212
213 double [] [] va lues = new double [w i recnt] [] ;
214 string [] [] v = new string [wi recnt] [] ;
215 double [] [] a = new double [wi recnt] [] ;
216 double [] [] b = new double [wi recnt] [] ;
217 string [] [] ch = new string [w irecnt] [] ;
218 int [] [] chnum = new int [w irecnt] [] ;
219 bool [] [] i sAin = new bool [wi recnt] [] ;
220
221 for (int i = 0 ; i < v . Length ; i++) {
222 v [i] = new string [max] ;
223 va lues [i] = new double [max] ;
224 a [i] = new double [max] ;
225 b [i] = new double [max] ;
226 ch [i] = new string [max] ;
227 chnum [i] = new int [max] ;
228 i sAin [i] = new bool [max] ;
229 }
230
231 for (int i = 0 ; i < a . Length ; i++) {
232 for (int j = 0 ; j < l engths [i] ; j++) {
233 ch [i] [j] = setup . g e tS t r ing (se tup . g e tS t r ing (” wire ” + i + ” . ” + j + ” ch ”) + ” ch ”) ;
234
235 i f (ch [i] [j] . StartsWith (”Ain”)) {
236 chnum [i] [j] = int . Parse (ch [i] [j] . Substr ing (3 , 1)) ;
237 i sAin [i] [j] = true ;
238 a [i] [j] = setup . getDouble (se tup . g e tS t r ing (” wire ” + i + ” . ” + j + ” ch ”) + ” A”) ;
239 b [i] [j] = setup . getDouble (se tup . g e tS t r ing (” wire ” + i + ” . ” + j + ” ch ”) + ” B”) ;
240 } else i f (ch [i] [j] . StartsWith (”Dout”)) {
241 chnum [i] [j] = int . Parse (ch [i] [j] . Substr ing (4 , 1)) ;
242 i sAin [i] [j] = f a l s e ;
243 } else {
244 throw new Exception (” Fe i l i o p p s e t t f i l ”) ;
245 }
246 }
247 }
248
249 kusb . setMeanMS(mean ms) ;
250
251 kusb . startDout (doutsetup . g e t In t eg e r (” dout t i ck ”)) ;
252 DateTime loopTimer = DateTime .Now;
253
254 double value ;
255 while (doMeasurementLoop) {
256
257 i f (doReloadDoutProg) {
258 doutsetup . r eadF i l e () ;
259 for (int i = 0 ; i < 6 ; i++) {
260 i f (re loadIndex [i]) {
261 progs [i] = doutsetup . g e tS t r ing (” wi r e ” + i) ;
262 kusb . setDoutProg (progs [i] , i) ;
263 }
264 }
265

111

266 s e tS ta tu s (” D i g i t a l output va lues updated”) ;
267 doReloadDoutProg = f a l s e ;
268 for (int i = 0 ; i < 6 ; i++) re loadIndex [i] = f a l s e ;
269 }
270
271 analogIn = kusb . readAnalog () ;
272 for (int i = 0 ; i < analogIn . Length ; i++) la s tAin [i] = analogIn [i] ;
273 lastDout = kusb . lastDout ;
274
275
276
277 for (int i = 0 ; i <= dg . GetUpperBound (0) ; i++) {
278 for (int j = 0 ; j < l engths [i] ; j++) {
279
280 i f (i sAin [i] [j]) {
281 value = analogIn [chnum [i] [j]] * a [i] [j] + b [i] [j] ;
282 v [i] [j] = value . ToString (” 0 .000 ; −0 .000 ; 0 .000 ”) ; ;
283 va lues [i] [j] = value ;
284
285 } else{
286 i f (lastDout [chnum [i] [j]]) {
287 v [i] [j] = f l e x i n o l v d d . ToString () ;
288 value = f l e x i n o l v d d ;
289 } else {
290 v [i] [j] = ”0” ;
291 value = 0 ;
292 }
293 va lues [i] [j] = value ;
294 }
295 }
296 // setValue ((s t r i n g []) v . Clone () , i) ;
297 setValue (v [i] , i) ;
298
299 try {
300 graphs [i] . addValues (va lues [i] , DateTime .Now) ;
301 } catch (Exception ex) {
302 s e tS ta tu s (”Problems p l o t t i n g : ” + ex . Message) ;
303 }
304
305 try {
306 wr i t e r . addValues (va lues [i] , DateTime .Now, i , l engths [i]) ;
307 } catch (Exception ex) {
308 s e tS ta tu s (”Problem saving : ” + ex . Message) ;
309 }
310
311 }
312
313 //Loop timer
314
315 while (DateTime .Now. Subtract (loopTimer) . Tota lMi l l i s e conds < per iode ms) {
316 Appl i cat ion . DoEvents () ;
317 }
318 Debug . WriteLine (”Loop time : ” + DateTime .Now. Subtract (loopTimer) . Tota lMi l l i s e conds . ToString () +

”ms”) ;
319 loopTimer = DateTime .Now;
320 }
321 kusb . stopDout () ;
322
323
324
325 startToolStr ipMenuItem . Enabled = true ;
326 exitProgramToolStripMenuItem . Enabled = true ;
327 reloadDoutValuesToolStripMenuItem . Enabled = f a l s e ;
328
329 reloadDoutValuesForWire1ToolStripMenuItem . Enabled = f a l s e ;
330 reloadDoutValuesForWire2ToolStripMenuItem . Enabled = f a l s e ;
331 reloadDoutValuesForWire3ToolStripMenuItem . Enabled = f a l s e ;
332 reloadDoutValuesForWire4ToolStripMenuItem . Enabled = f a l s e ;
333 reloadDoutValuesForWire5ToolStripMenuItem . Enabled = f a l s e ;
334
335 se tS ta tu s (”Measurement ended”) ;
336 }
337
338 private void re loadDoutValuesToolStr ipMenuItem Click (object sender , EventArgs e) {
339 doReloadDoutProg = true ;
340 for (int i = 0 ; i < 5 ; i++) re loadIndex [i] = true ;
341 }
342
343 private void reloadDoutValuesForWire1ToolStripMenuItem Click (object sender , EventArgs e) {
344 doReloadDoutProg = true ;
345 re loadIndex [0] = true ;
346 }
347
348 private void reloadDoutValuesForWire2ToolStripMenuItem Click (object sender , EventArgs e) {
349 doReloadDoutProg = true ;
350 re loadIndex [1] = true ;
351
352 }
353
354 private void reloadDoutValuesForWire3ToolStripMenuItem Click (object sender , EventArgs e) {
355 doReloadDoutProg = true ;
356 re loadIndex [2] = true ;
357
358 }
359
360 private void reloadDoutValuesForWire4ToolStripMenuItem Click (object sender , EventArgs e) {
361 doReloadDoutProg = true ;
362 re loadIndex [3] = true ;
363 re loadIndex [4] = true ;
364
365 }
366
367 private void reloadDoutValuesForWire5ToolStripMenuItem Click (object sender , EventArgs e) {
368 doReloadDoutProg = true ;
369 re loadIndex [5] = true ;
370
371 }
372
373 private void timGC Tick (object sender , EventArgs e) {
374 System .GC. Co l l e c t () ;
375 }
376
377

112

378
379
380 }
381 }

Listing A.2: Main program (FlexinolRigg.cs)

Listing A.3: Class for storing data (dataWriter.cs)

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Text ;
4 using System . IO ;
5
6 namespace f l ex ino lRiggSansRS {
7 c lass dataWriter {
8 int i n t e r v a l ;
9

10 string [] f i l e P r e f i x ;
11 string [] f i l enames ;
12 string s a v e t o f o l d e r ;
13 DateTime f i lenameDate ;
14
15
16 public dataWriter (string [] f i l e P r e f i x , int newf i l e Inte rva lDays , string s a v e t o f o l d e r) {
17 i n t e r v a l = newf i l e In t e rva lDays ;
18 this . f i l e P r e f i x = f i l e P r e f i x ;
19 this . s a v e t o f o l d e r = sav e t o f o l d e r ;
20
21 f i l enames = getFi lenames (f i l e P r e f i x) ;
22 }
23
24
25 public void addValues (double [] values , DateTime d , int f i l e n r , int l en){
26 i f (DateTime .Now. Subtract (f i lenameDate) . TotalDays >= i n t e r v a l) f i l enames = getFi lenames (f i l e P r e f i x)

;
27
28 Fi leStream f s = null ;
29 StreamWriter sw ;
30
31 i f (F i l e . Ex i s t s (f i l enames [f i l e n r])){
32 sw = F i l e . AppendText (f i l enames [f i l e n r]) ;
33 } else{
34 f s = F i l e . Create (f i l enames [f i l e n r]) ;
35 sw = new StreamWriter (f s) ;
36 }
37
38
39 sw . Write (d . ToString (”dd .MM. yyyy HH:mm: s s . f ”) + ”\ t ”) ;
40 for (int i = 0 ; i < l en ; i++) {
41 sw . Write (string . Format (” {0 :0 .000} ” , va lues [i]) + ”\ t ”) ;
42 }
43 sw . Write (”\n”) ;
44
45 sw . Close () ;
46 i f (f s != null) f s . Close () ;
47 }
48
49
50 private string [] getFi lenames (string [] p r e f i x) {
51 string [] r e t = new string [p r e f i x . Length] ;
52 for (int i = 0 ; i < p r e f i x . Length ; i++) {
53 r e t [i] = getFilename (p r e f i x [i]) ;
54 }
55
56 return r e t ;
57 }
58
59 private string getFilename (string p r e f i x) {
60 string f i l ename = sav e t o f o l d e r + ”\\” + p r e f i x + DateTime .Now. ToString (”yyyy .MM. dd”) ;
61 i f (! F i l e . Ex i s t s (f i l ename + ” . txt ”)) return f i l ename + ” . txt ” ;
62 int cnt = 0 ;
63 f i lenameDate = DateTime .Now;
64
65 while (true) {
66 string f i l ename2 = f i l ename + ” ” + cnt + ” . txt ” ;
67 i f (! F i l e . Ex i s t s (f i l ename2)) return f i l ename2 ;
68 cnt++;
69 }
70
71
72
73 }
74 }
75 }

Listing A.3: Class for storing data (dataWriter.cs)

Listing A.4: Class for control of digital output signals (doutProgram.cs)

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Co l l e c t i on s ;
4 using System . Linq ;
5 using System . Text ;
6
7 namespace f l ex ino lRiggSansRS {
8 c lass doutProgram {
9

10 bool [] prog ;

113

11 int prog i = 0 ;
12
13 public doutProgram (string prog) {
14 string [] p r og e l = prog . S p l i t (’% ’) [0] . Trim () . S p l i t (’ ; ’) ;
15
16 ArrayList tmp = new ArrayList () ;
17
18 for (int i = 0 ; i < p rog e l . Length ; i++) {
19 System . Diagnos t i c s . Debug . WriteLine (p r og e l [i]) ;
20 string [] p r og e l 2 = prog e l [i] . S p l i t (’* ’) ;
21 bool v = bool . Parse (p rog e l 2 [1]) ;
22 for (int j = 0 ; j < int . Parse (p rog e l 2 [0]) ; j++) {
23 tmp .Add(v) ;
24 }
25 }
26
27 this . prog = (bool []) tmp . ToArray (typeof (bool)) ;
28 }
29
30 public bool nextValue () {
31 bool r e t = prog [p r og i ++];
32 i f (p r og i > prog . GetUpperBound (0)) p r og i = 0 ;
33
34 return r e t ;
35 }
36 }
37 }

Listing A.4: Class for control of digital output signals (doutProgram.cs)

Listing A.5: Class for communication with DAQ-module KUSB3100 (Kusb3100.cs)

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Linq ;
4 using System . Text ;
5
6 using OpenLayers . Base ;
7
8 namespace f l ex ino lRiggSansRS {
9 c lass Kusb3100 {

10
11 private DeviceMgr deviceMgr ;
12 private Device dev ice ;
13
14 private AnalogInputSubsystem ainSS ;
15 private AnalogOutputSubsystem aoutSS ;
16
17 private Digita l InputSubsystem dinSS ;
18 private DigitalOutputSubsystem doutSS ;
19
20 private int bu f l en ;
21 private OlBuffer daqBuffer ;
22
23 private double [] a in = {0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} ;
24 private bool ain done ;
25
26 public bool [] lastDout = { fa lse , fa lse , fa lse , fa lse , fa lse , fa lse , fa lse , f a l s e } ;
27 public bool [] dout = { fa lse , fa lse , fa lse , fa lse , fa lse , fa lse , fa lse , f a l s e } ;
28 double [] buf ;
29
30 private int mean ms = 100;
31 private int ainClk = 10000;
32
33 private System . Windows . Forms . Timer timer = new System . Windows . Forms . Timer () ;
34 private doutProgram [] doutProgs ;
35
36 public Kusb3100 () {
37 deviceMgr = DeviceMgr . Get () ;
38
39 // Connects to f i r s t dev ice . Multi dev ice support should be added l a t e r
40 dev ice = deviceMgr . GetDevice (deviceMgr . GetDeviceNames () [0]) ;
41 ainSS = dev ice . AnalogInputSubsystem (0) ;
42 // Create event handlers
43 // ainSS . DriverRunTimeErrorEvent += new DriverRunTimeErrorEventHandler (HandleDriverRunTimeErrorEvent

) ;
44 ainSS . BufferDoneEvent += new BufferDoneHandler (HandleBufferDone) ;
45 // ainSS . QueueDoneEvent += new QueueDoneHandler (HandleQueueDone) ;
46 // ainSS . QueueStoppedEvent += new QueueStoppedHandler (HandleQueueDone) ;
47
48 // Conf igur ing analog output system
49 aoutSS = dev ice . AnalogOutputSubsystem (0) ;
50 aoutSS . DataFlow = DataFlow . S ing leValue ;
51 aoutSS . Config () ;
52
53 // Conf igur ing d i g i t a l input system
54 dinSS = dev ice . Dig ita l InputSubsystem (0) ;
55 dinSS . DataFlow = DataFlow . S ing leValue ;
56 dinSS . Config () ;
57
58 // Conf igur ing d i g i t a l output system
59 doutSS = dev ice . DigitalOutputSubsystem (0) ;
60 doutSS . DataFlow = DataFlow . S ing leValue ;
61 doutSS . Config () ;
62
63
64
65 timer . Tick += new EventHandler (t imer Tick) ;
66 }
67
68 public void setDoutProgs (string [] progs) {
69 doutProgs = new doutProgram [progs . Length] ;
70 for (int i = 0 ; i < progs . Length ; i++) {
71 doutProgs [i] = new doutProgram (progs [i]) ;
72 }
73 }
74

114

75 public void setDoutProg (string prog , int i) {
76 doutProgs [i] = new doutProgram (prog) ;
77 }
78
79 public void startDout (int t i ck ms) {
80 timer . I n t e r v a l = t ick ms ;
81 timer . Enabled = true ;
82 }
83
84 public void stopDout () {
85 timer . Enabled = f a l s e ;
86
87 for (int i = 0 ; i < dout . Length ; i++) dout [i] = f a l s e ;
88
89 w r i t e D i g i t a l (dout) ;
90 lastDout = dout ;
91 }
92
93 void t imer Tick (object sender , EventArgs e) {
94 for (int i = 0 ; i < dout . Length ; i++) dout [i] = f a l s e ;
95
96 for (int i = 0 ; i < doutProgs . Length ; i++) {
97 dout [i] = doutProgs [i] . nextValue () ;
98 }
99

100 w r i t e D i g i t a l (dout) ;
101
102 lastDout = dout ;
103 }
104
105 public void setMeanMS(int mean ms){
106 this . mean ms = mean ms ;
107 bu f l en = (int) (mean ms * ainClk) / (1000 * 8) ;
108 i f (daqBuffer != null) {
109 daqBuffer . Dispose () ;
110 daqBuffer = null ;
111 }
112 daqBuffer = new OlBuffer (bu f l en * 8 , ainSS) ;
113 ainSS . ChannelList . Clear () ;
114 for (int i = 0 ; i < 8 ; i++) ainSS . ChannelList . I n s e r t (i , i) ;
115 ainSS . DataFlow = DataFlow . Continuous ;
116 ainSS . Clock . Frequency = ainClk ;
117 ainSS . Config () ;
118
119 }
120
121 public double [] readAnalog () {
122
123
124
125 ainSS . BufferQueue . FreeAllQueuedBuffers () ;
126
127 // daqBuffer . Rea l l o ca te (bu f l en * 8) ;
128 // daqBuffer = new OlBuffer (bu f l en * 8 , ainSS) ;
129
130 ainSS . BufferQueue . QueueBuffer (daqBuffer) ;
131
132
133 ain done = f a l s e ;
134 // ainSS . Config () ;
135 ainSS . Star t () ;
136
137 while (! a in done) {
138 System . Windows . Forms . Appl i cat ion . DoEvents () ;
139 }
140
141 return ain ;
142 }
143
144 /*
145 pub l i c void writeAnalog (double [] outputValues) {
146 aoutSS . SetS ing leValueAsVolts (0 , outputValues [0]) ;
147 aoutSS . SetS ing leValueAsVolts (1 , outputValues [1]) ;
148
149 }
150 */
151 /*
152 pub l i c bool [] r e adD ig i t a l () {
153
154 in t din = dinSS . GetSingleValue () ;
155 bool [] tmp = new bool [8] ;
156 in t t = 1 ;
157
158 f o r (i n t i = 0 ; i < 8 ; i++) {
159 tmp [i] = (((t << i) & din) != 0) ;
160 }
161
162 return tmp ;
163 }
164 */
165 public void w r i t e D i g i t a l (bool [] outputValues) {
166 int tmp = 0x00 ;
167
168 for (int i = 0 ; i < 8 ; i++) {
169 i f (outputValues [i]) {
170 tmp += (int)Math .Pow(2 , i) ;
171 }
172 }
173
174 doutSS . SetS ing leValue (tmp) ;
175
176 }
177
178
179 public void HandleBufferDone (object sender , BufferDoneEventArgs bufferDoneData) {
180 OlBuffer o lBu f f e r = bufferDoneData . OlBuffer ;
181
182 // Get the data as vo l t age s
183 buf = o lBu f f e r . GetDataAsVolts () ;
184 // o lBu f f e r . Dispose () ;
185 //Analog input system does not support s imultaneous sample and hold
186 for (int i = 0 ; i < ain . Length ; i++) ain [i] = 0 ;
187

115

188 for (int n = 0 ; n < bu f l en * 8 ; n++) {
189 ain [n % 8] += buf [n] ;
190 }
191
192 for (int i = 0 ; i < 8 ; i++) {
193 ain [i] = ain [i] / bu f l en ;
194 }
195
196 while (ainSS . State == SubsystemBase . State s . Running) ;
197 // ainSS . Dispose () ;
198 ain done = true ;
199 }
200 }
201 }

Listing A.5: Class for communication with DAQ-module KUSB3100 (Kusb3100.cs)

Listing A.6: Wrapper class for NPlot plotting library (ngraph.cs)

1 using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Text ;
4 using System . Drawing ;
5 using System . Windows . Forms ;
6 using System . Diagnos t i c s ;
7 using NPlot ;
8
9 namespace f l ex ino lRiggSansRS {

10 c lass ngraph : Panel{
11 public NPlot . Windows . PlotSurface2D xygraph = new NPlot . Windows . PlotSurface2D () ;
12 private LinePlot [] p l o t s ;
13 List<DateTime> xvalues ;
14 List<double > [] yva lues ;
15
16 private int xlength ;
17 private string t i t l e ;
18
19 private string dump ;
20 private DateTime lastDump = DateTime .Now;
21
22 public int XLength
23 {
24 get { return xlength ; }
25 s e t { xlength = value ; }
26 }
27
28 public Color [] l i n e c o l o r s = {
29 Color . Red ,
30 Color . Blue ,
31 Color . Lime ,
32 Color . Black ,
33 Color . Purple ,
34 Color . Yellow ,
35 Color . Cyan ,
36 Color . Gray ,
37 Color . Brown
38 } ;
39
40 public ngraph (string [] names , int xlength , string t i t l e , string dump) {
41 Contro ls .Add(xygraph) ;
42 this . t i t l e = t i t l e ;
43 xygraph . Locat ion = new Point (0 , 0) ;
44 xygraph . S i z e = this . S i z e ;
45 XLength = xlength ;
46 this . Res ize += new EventHandler (ngraph Res ize) ;
47 this . dump = dump ;
48
49 initGraph (names) ;
50 }
51
52 void ngraph Res ize (object sender , EventArgs e) {
53 xygraph . S i z e = this . S i z e ;
54 }
55
56 private void in itGraph (string [] names){
57 int p lo t cnt = names . Length ;
58 xygraph . Clear () ;
59
60 Font myFont = new Font (” Ar ia l ” , 8 , FontStyle . Bold) ;
61
62 //Add a background gr id f o r be t t e r chart r e a d a b i l i t y .
63 Grid gr id = new Grid () ;
64 gr id . Vert icalGridType = Grid . GridType . Coarse ;
65 gr id . HorizontalGridType = Grid . GridType . Coarse ;
66 gr id . MajorGridPen = new Pen(Color . LightGray , 1 .0 f) ;
67 xygraph .Add(gr id) ;
68
69 xygraph . T i t l e = t i t l e ;
70 xygraph . T i t l eCo lo r = Color . Red ;
71 xygraph . Capture = f a l s e ;
72 xygraph . CausesVal idat ion = f a l s e ;
73
74 xvalues = new List<DateTime >() ;
75 yvalues = new List<double>[p l o t cnt] ;
76 p l o t s = new LinePlot [p lo t cnt] ;
77
78 for (int i = 0 ; i < p lo tcnt ; i++) {
79 yvalues [i] = new List<double>() ;
80 p l o t s [i] = new LinePlot () ;
81 p l o t s [i] . Color = l i n e c o l o r s [i % l i n e c o l o r s . GetUpperBound (0)] ;
82 p l o t s [i] . AbscissaData = xvalues ;
83 p l o t s [i] . DataSource = yvalues [i] ;
84 p l o t s [i] . Label = names [i] ;
85 xygraph .Add(p l o t s [i]) ;
86 }
87
88 // Balance p lo t gene ra l s e t t i n g s .

116

89 xygraph . ShowCoordinates = true ;
90 xygraph . YAxis1 . Label = ”Deformasjon [cm] / Kraft [N] ” ;
91 xygraph . YAxis1 . Labe lOf f se tAbso lute = true ;
92 xygraph . YAxis1 . Labe lOf f s e t = 30 ;
93 //xygraph . YAxis1 . WorldMin = 0 ;
94 //xygraph . YAxis1 . WorldMax = 50 ;
95
96 xygraph . XAxis1 . Label = ”Tid [sek] ” ;
97 xygraph . Padding = 15 ;
98
99 // Refresh su r f a c e s .

100 xygraph . Refresh () ;
101
102 Legend legend = new Legend () ;
103 legend . AttachTo (PlotSurface2D . XAxisPosit ion . Top , PlotSurface2D . YAxisPosit ion . Le f t) ;
104 legend . VerticalEdgePlacement = Legend . Placement . I n s i d e ;
105 legend . HorizontalEdgePlacement = Legend . Placement . I n s i d e ;
106 legend . BorderStyle = LegendBase . BorderType . Line ;
107 legend . XOffset = 10 ;
108 legend . YOffset = 10 ;
109 legend . Font = myFont ;
110 xygraph . Legend = legend ;
111 }
112
113 /*
114 pr iva t e void dumpData () {
115 try {
116 Bitmap b = new Bitmap (xygraph . Width , xygraph . Height) ;
117 xygraph . DrawToBitmap(b , new Rectangle (new Point (0 , 0) , xygraph . S i z e)) ;
118
119 b . Save (dump) ;
120 } catch (Exception ex) {
121 Debug . WriteLine (”Datadump e r r o r : ” + ex . Message) ;
122 }
123
124 lastDump = DateTime .Now;
125 }
126 */
127
128 public void addValues (double [] values , DateTime d) {
129
130 while (xva lues . Count > 0){
131 i f (d . Subtract (xvalues [0]) . TotalSeconds > XLength) {
132 xvalues . RemoveAt (0) ;
133 for (int j = 0 ; j < yvalues . Length ; j++) {
134 yvalues [j] . RemoveAt (0) ;
135 }
136 } else break ;
137 }
138
139 for (int i = 0 ; i < yvalues . Length ; i++) {
140 xygraph . Remove(p l o t s [i] , true) ;
141 }
142
143 xvalues .Add(d) ;
144 for (int i = 0 ; i < yvalues . Length ; i++) {
145 yvalues [i] . Add(va lues [i]) ;
146 xygraph .Add(p l o t s [i]) ;
147 }
148 //xygraph . Refresh () ;
149 doRefresh () ;
150
151 // i f (DateTime .Now. Subtract (lastDump) . TotalMinutes > 1) dumpData () ;
152 }
153
154
155 delegate void doRefreshCal lback () ;
156 private void doRefresh () {
157 i f (xygraph . InvokeRequired) {
158 doRefreshCal lback d = new doRefreshCal lback (doRefresh) ;
159 xygraph . Invoke (d) ;
160 }
161 else {
162 xygraph . Refresh () ;
163 }
164
165 }
166
167 }
168 }

Listing A.6: Wrapper class for NPlot plotting library (ngraph.cs)

Listing A.7: Class for reading setup files (setup.cs)

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Text ;
4 using System . IO ;
5 using System . Diagnos t i c s ;
6
7 namespace f l ex ino lRiggSansRS {
8 public c lass setup {
9

10 private System . Co l l e c t i on s . Hashtable va lues ;
11 private string f i l ename ;
12
13 public setup (string f i l ename) {
14 this . f i l ename = f i l ename ;
15 r eadF i l e () ;
16 }
17
18 public void r eadF i l e () {
19 Fi leStream f s = F i l e . OpenRead(this . f i l ename) ;
20 StreamReader s r = new StreamReader (f s) ;
21
22 va lues = new System . Co l l e c t i o n s . Hashtable () ;

117

23
24 string tmp , name , va lue ;
25 int i nd ;
26 while (! s r . EndOfStream) {
27 tmp = sr . ReadLine () ;
28 try {
29 ind = tmp . IndexOf (”]=”) ;
30 name = tmp . Substr ing (1 , ind − 1) ;
31 va lue = tmp . Substr ing (ind + 2) ;
32 va lues .Add(name , va lue) ;
33 } catch (Exception e) {
34 Debug . WriteLine (” Error in setup f i l e . Exception d e t a i l s : ” + e . Message) ;
35 }
36 }
37
38 s r . Close () ;
39 f s . Close () ;
40 }
41
42 public string ge tS t r ing (string name){
43 return (string) va lues [name] ;
44 }
45
46 public int ge t In t eg e r (string name) {
47 return int . Parse (ge tS t r ing (name)) ;
48 }
49
50 public double getDouble (string name) {
51 return double . Parse (ge tS t r ing (name)) ;
52 }
53 }
54 }

Listing A.7: Class for reading setup files (setup.cs)

A.2 Software for Web Surveillance of Test Frame

The below code is the implementation of the program described in section 4.3.2.

Listing A.8: Main webpage (Default.aspx)

1 ı̈�¿<%@ Page Language=”VB” AutoEventWireup=” f a l s e ” CodeFile=” Default . aspx . vb” I n h e r i t s=” De fau l t ” %>
2
3 <!DOCTYPE html PUBLIC ”−//W3C//DTD XHTML 1.0 Tran s i t i ona l //EN” ” http ://www. w3 . org /TR/xhtml1/DTD/xhtml1−

t r a n s i t i o n a l . dtd”>
4
5
6 <html>
7 <head>
8 <l ink re l=” s t y l e s h e e t ” type=” text / c s s ” href=” s t y l e s . c s s ”>
9 <t i t l e>Flex ino lRigg datadump</ t i t l e>

10 </head>
11 <body>
12
13 <%
14 Dim f o l d e r s (4) As String
15 Dim names (4) As String
16 Dim plotnames (4) As String
17
18 f o l d e r s (0) = ”C:\ FlexinolRiggData\ f i x a t i o n \”
19 f o l d e r s (1) = ”C:\ FlexinolRiggData\ sma l l l oad \”
20 f o l d e r s (2) = ”C:\ FlexinolRiggData\heavy load\”
21 f o l d e r s (3) = ”C:\ FlexinolRiggData\ f l e x i n o l a n t a g o n i s t \”
22 f o l d e r s (4) = ”C:\ FlexinolRiggData\ sp r i ng an tagon i s t \”
23
24 names (0) = ” Fixat ion t e s t ”
25 names (1) = ”Test with smal l load ”
26 names (2) = ”Test with heavy load ”
27 names (3) = ” F l ex ino l as antagon i s t ”
28 names (4) = ” Spring as antagon i s t ”
29
30 plotnames (0) = ”Force ; Output”
31 plotnames (1) = ” De f l e c t i on ; Output”
32 plotnames (2) = ” De f l e c t i on ; Output”
33 plotnames (3) = ”Force ; De f l e c t i on ; Output ; Output Antagonist ”
34 plotnames (4) = ”Force ; De f l e c t i on ; Output”
35
36 Dim action As String = Request (” ac t ion ”)
37
38 I f action = ” v i ew fo lde r ” Then
39 %>
40 Back to main menu
41 <%
42 Dim f o l d e r As String = Int (Request (” f o l d e r ”))
43 Response . Write (”<h2>” & names (f o l d e r) & ”</h2>”)
44
45 Dim f i l e i n f o s As System . Co l l e c t i o n s . ArrayList = doSort (f o l d e r s (f o l d e r))
46
47 Response . Write (”<tab l e border=0><tr><td va l i gn =’top ’>”)
48 Response . Write (”<tab l e border=0><tr><th width=200 a l i gn=l e f t >Name</th><th width=100 a l i gn=l e f t >Size

</th><th width=150 a l i gn=l e f t >Last modif ied </th></tr>”)
49 For Each f i l e i n f o As IO . F i l e I n f o In f i l e i n f o s
50 Dim ur l As String = ” de f au l t . aspx ? act ion=v i e w f i l e&f o l d e r=” & f o l d e r & ”&f i l e=” & f i l e i n f o .Name
51 Response . Write (”<tr><td><a hr e f =’” & ur l & ”’>”
52 & f i l e i n f o .Name & ”</td><td>”
53 & Int (f i l e i n f o . Length / 1024) & ” KB</td><td>”
54 & f i l e i n f o . LastWriteTime & ”</td>”
55 & ”</tr>”)
56 Next
57
58 Response . Write (”</table>”)

118

59 Response . Write (”</td></tr ></table>”)
60
61 ElseI f action = ” v i e w f i l e ” Then
62 Dim f o l d e r As String = Int (Request (” f o l d e r ”))
63 Dim f i l e As String = f o l d e r s (f o l d e r) & Request (” f i l e ”)
64 Dim s t a r t As Integer = 0 : Integer . TryParse (Request (” s t a r t ”) , s t a r t)
65 Dim l ength As Integer = 200 : Integer . TryParse (Request (” length ”) , l ength)
66 Dim sk ip As Integer = 1 : Integer . TryParse (Request (” sk ip ”) , sk ip)
67 Dim showdata As String = Request (”showdata”)
68 Dim method As String = Request (”method”)
69
70 I f showdata = ”on” Then showdata = ”checked”
71
72
73 I f l ength = 0 Then l ength = 200
74 I f sk ip < 1 Then sk ip = 1
75
76 Dim objFSO As New Sc r i p t i ng . Fi leSystemObject
77 Dim objText As Sc r i p t i ng . TextStream = objFSO . OpenTextFile (f i l e)
78
79 %>
80 <a href=” Default . aspx ? act ion=v i ew fo lde r&f o l d e r=<%=f o l d e r%>”>Back to <%=names (Integer . Parse (f o l d e r))%>

f o l d e r

81 <form action=” de f au l t . aspx ? act i on=v i e w f i l e&f o l d e r=<%=f o l d e r%>&f i l e=<%=reques t (” f i l e ”)%>&method=span” method

=” post ”>
82 Star t at l i n e <input type=” text ” s ize=”10” name=” s t a r t ” value=”<%=s t a r t%>”/> and
83 show <input type=” text ” s ize=”10” name=” length ” value=”<%=length%>” /> l i n e s . Show every <input type=” text ”

s ize=”10” name=” sk ip ” value=”<%=skip%>” /> l i n e .
84 Show data <input name=”showdata” type=”checkbox” <%=showdata%> />
85 <input type=”submit” value=”Go! ” />
86 </form>
87

88 <form action=” de f au l t . aspx ? act i on=v i e w f i l e&f o l d e r=<%=f o l d e r%>&f i l e=<%=reques t (” f i l e ”)%>&method=l a s t ” method

=” post ”>
89 Show <input type=” text ” s ize=”10” name=” length ” value=”<%=length%>” /> l a s t l i n e s .
90 Show data <input name=”showdata” type=”checkbox” <%=showdata%> />
91 <input type=”submit” value=”Go! ” />
92 </form>
93
94 <%
95 I f showdata = ”checked” Then
96 Dim cnt As Integer = 0
97 For i As Integer = 1 To s t a r t
98 I f objText . AtEndOfStream Then Exit For
99 For j As Integer = 1 To sk ip

100 I f objText . AtEndOfStream Then Exit For
101 objText . SkipLine ()
102 Next
103 cnt = cnt + 1
104 Next
105
106 Dim text As String = ””
107 For i As Integer = s t a r t To s t a r t + length
108 I f objText . AtEndOfStream Then Exit For
109 text = text & objText . ReadLine & vbCrLf
110 For j As Integer = 1 To sk ip − 1
111 objText . SkipLine ()
112 Next
113 cnt = cnt + 1
114 Next
115
116 While Not objText . AtEndOfStream
117 For j As Integer = 1 To sk ip
118 I f objText . AtEndOfStream Then Exit For
119 objText . SkipLine ()
120 Next
121 cnt = cnt + 1
122 End While
123
124
125 objText . Close ()
126 objText = Nothing
127 objFSO = Nothing
128
129 Response . Write (”<h2>” & f i l e & ” (” & cnt & ” l i n e s)</h2>”)
130 Response . Write (”<tab l e border = ’0 ’ width=’1200’>< tr>”)
131
132
133 text = Replace (text , vbTab , ”</td><td width=75>”)
134 text = Replace (text , vbLf , ”</td></tr><tr><td width=75>”)
135
136 text = ”<tab l e border=0><tr><td width=150>” & text & ”</td></tr ></table>”
137 Response . Write (”<td va l i gn =’top ’>” & text & ”</td>”)
138 Else
139 Response . Write (”<h2>” & f i l e & ”</h2>”)
140 Response . Write (”<tab l e border = ’0 ’ width=’1200’>< tr>”)
141 End I f
142
143
144 Response . Write (”<td va l i gn =’top ’>”)
145
146 Response . Write (”<img s r c =’ p lo t . aspx?”)
147 I f method = ”span” Then Response . Write (” s t a r t=” & s t a r t)
148 Response . Write (”&length=” & length)
149 Response . Write (”&names=” & plotnames (f o l d e r))
150 Response . Write (”&f i l e=” & f i l e)
151 Response . Write (”&t i t l e=” & names (f o l d e r))
152 Response . Write (”&method=” & method)
153 Response . Write (” ’ a l t = ’ ’ >”)
154
155 %>
156 </td></ tr>
157 </ table>
158
159
160 <%
161 ElseI f action = ” v i ew la s t ” Then
162 Dim l ength As Integer = 200 : Integer . TryParse (Request (” length ”) , l ength)
163 I f l ength = 0 Then l ength = 1000
164 %>
165 Back to main menu

166 <form action=” de f au l t . aspx ? act i on=v i ew la s t ” method=” post ”>
167 Show <input type=” text ” s ize=”10” name=” length ” value=”<%=length%>” /> l a s t l i n e s .

119

168 <input type=”submit” value=”Go! ” />
169 </form>
170 <%
171 Dim f i l e i n f o s As System . Co l l e c t i o n s . ArrayList
172 For i As Integer = 0 To f o l d e r s . GetUpperBound (0)
173 f i l e i n f o s = doSort (f o l d e r s (i))
174
175 Dim f i l e As String = f o l d e r s (i) & DirectCast (f i l e i n f o s (0) , IO . F i l e I n f o) .Name
176
177 Response . Write (”<h2>” & names (i) & ”</h2>”)
178 Response . Write (”<img s r c =’ p lo t . aspx?”)
179 Response . Write (”&length=” & length)
180 Response . Write (”&names=” & plotnames (i))
181 Response . Write (”&f i l e=” & f i l e)
182 Response . Write (”&t i t l e=” & names (i))
183 Response . Write (”&method=l a s t ”)
184 Response . Write (” ’ a l t = ’ ’ >

”)
185
186
187 Next
188
189 Else
190 Response . Write (”<h2>Flexino lRigg </h2>”)
191 Response . Write (”<tab l e width = ’400 ’ border=’0’><tr><td>”)
192 Response . Write (””)
193 For i As Integer = 0 To UBound(f o l d e r s)
194 Response . Write (”<l i ><a hr e f =’ d e f au l t . aspx ? act ion=v i ew fo lde r&f o l d e r=” & i & ”’>” & names (i) & ”</l i >”)
195 Next
196 Response . Write (””)
197 Response . Write (”</td><td va l i gn =’top ’><l i ><a hr e f =’ d e f au l t . aspx ? act ion=viewlast ’>View l a s t data</l i ></td></tr ></table>”)
198
199
200
201 ’ S i s t e b i l d e f r a webcam
202 Response . Write (””)
203 End I f
204
205
206
207 %>
208
209 </body>
210 </html>

Listing A.8: Main webpage (Default.aspx)

Listing A.9: Code for main webpage (Default.aspx.vb)

1 ı̈�¿Imports System . Co l l e c t i on s
2 Imports System . Co l l e c t i o n s . Generic
3 Imports System . IO
4
5 Pa r t i a l Class De fau l t
6 I n h e r i t s System .Web. UI . Page
7
8
9 Private Class Fi le InfoCreat ionComparer

10 Implements IComparer
11
12 Public Function Compare(ByVal x As Object , ByVal y As Object) As Integer Implements System . Co l l e c t i on s .

IComparer .Compare
13 Dim xF i l e As F i l e I n f o = CType(x , F i l e I n f o)
14 Dim yF i l e As F i l e I n f o = CType(y , F i l e I n f o)
15 Dim time As TimeSpan = yFi l e . LastWriteTime . Subtract (xF i l e . LastWriteTime)
16 Return time . TotalMinutes
17 End Function
18 End Class
19
20 Public Function doSort (ByVal path As String) As ArrayList
21 Dim d i r I n f o As New Di r e c to ry In f o (path)
22 Dim FileNo As Integer = d i r I n f o . GetFi l e s (” * .* ”) . Length
23 I f FileNo > 0 Then
24 ’ ’ Changed Code ’ ’ ’
25 Dim f i l e s () As F i l e I n f o = d i r I n f o . GetFi l e s () ’ ’No need f o r f i l t e r ”* .*” i f you are s e l e c t i n g

everyth ing
26 Dim l i s t As New ArrayList (f i l e s) ’ ’Add the f i l e s array to an Array (l i s t)
27 l i s t . Sort (New Fi leInfoCreat ionComparer ())
28 Return l i s t
29 Else
30 Return Nothing
31 End I f
32 End Function
33
34 End Class

Listing A.9: Code for main webpage (Default.aspx.vb)

Listing A.10: Plot generator (plot.aspx)

1 ı̈�¿<%@ Page Language=”VB” AutoEventWireup=” f a l s e ” CodeFile=” p lo t . aspx . vb” I n h e r i t s=” p lo t ” %>
2 <!DOCTYPE HTML PUBLIC ”−//W3C//DTD HTML 4.0 Tran s i t i ona l //EN”>
3 <HTML>
4 <HEAD>
5 <t i t l e>Demo1</ t i t l e>
6 <meta name=”GENERATOR” content=” Microso f t Visua l Studio .NET 7.1 ”>
7 <meta name=”CODE LANGUAGE” content=” Visual Basic .NET 7.1 ”>
8 <meta name=” v s d e f a u l t C l i e n t S c r i p t ” content=” JavaScr ipt ”>
9 <meta name=” vs targetSchema ” content=” http :// schemas . mic ro so f t . com/ i n t e l l i s e n s e / i e 5 ”>

120

10 </HEAD>
11 <body>
12
13 <form id=”Form2” method=” post ” runat=” s e rv e r ”>
14
15 </form>
16
17 </body>
18 </HTML>

Listing A.10: Plot generator (plot.aspx)

Listing A.11: Code for plot generator (plot.aspx.vb)

1 ı̈�¿Imports System . Co l l e c t i on s . Generic
2 Imports System . Drawing
3 Imports NPlot
4 Imports System . IO
5
6
7 Pa r t i a l Class p lo t
8 I n h e r i t s System .Web. UI . Page
9

10 Protected Sub Page Load (ByVal sender As Object , ByVal e As System . EventArgs) Handles Me.Load
11 Dim memStream As New System . IO . MemoryStream
12 Dim xygraph As New NPlot . Bitmap . PlotSurface2D (800 , 600)
13
14 Dim p l o t s As LinePlot ()
15 Dim xvalues As L i s t (Of Date)
16 Dim yvalues As L i s t (Of Double) ()
17
18 Dim l i n e c o l o r s As Color () = {
19 Color . Red ,
20 Color . Blue ,
21 Color . Lime ,
22 Color . Black ,
23 Color . Purple ,
24 Color . Yellow ,
25 Color . Cyan ,
26 Color . Gray ,
27 Color . Brown}
28
29 Dim method As String = Request (”method”)
30 Dim f i l ename As String = Request (” f i l e ”)
31 Dim names () As String = Request (”names”) . S p l i t (” ; ”)
32 Dim p l o t t i t l e As String = Request (” t i t l e ”)
33 Dim l ength As Integer = Request (” length ”)
34 Dim s t a r t As Integer
35
36 I f method I s Nothing Or method = ”” Then method = ”span”
37 I f method = ”span” Then
38 s t a r t = Request (” s t a r t ”)
39 End I f
40
41 I f l ength = 0 Then l ength = 200
42
43 Dim f s o As New Sc r i p t i ng . Fi leSystemObject
44 Dim t s As Sc r i p t i ng . TextStream = f s o . OpenTextFile (f i lename , S c r i p t i ng . IOMode . ForReading)
45
46
47 Dim cnt As Integer = 0
48 Dim text As String = ””
49 Dim l i n e s () As String = {}
50
51 I f method = ”span” Then
52 For i As Integer = 1 To s t a r t
53 I f t s . AtEndOfStream Then Exit For
54 t s . SkipLine ()
55 Next
56
57
58 For i As Integer = s t a r t To s t a r t + length
59 I f t s . AtEndOfStream Then Exit For
60 text = text & ts . ReadLine & vbCrLf
61 cnt = cnt + 1
62 Next
63
64 l i n e s = text .Trim () . S p l i t (vbCrLf)
65 ElseI f method = ” l a s t ” Then
66
67 text = ts . ReadAll ()
68 l i n e s = text . S p l i t (vbLf)
69 Dim a As New ArrayList (l i n e s)
70
71 While a .Count > l ength
72 a . RemoveAt (0)
73 End While
74
75 l i n e s = CType(a . ToArray (GetType (String)) , String ())
76 End I f
77
78 t s . Close ()
79
80
81
82 Dim p lo tcnt As Integer = names . GetUpperBound (0)
83
84 xvalues = New L i s t (Of Date)
85 ReDim yvalues (p lo t cnt)
86 For i As Integer = 0 To p lo t cnt
87 yvalues (i) = New L i s t (Of Double)
88 Next
89
90 ReDim p l o t s (p lo t cnt)
91
92 For i As Integer = 0 To l i n e s . GetUpperBound (0)
93 Dim line () As String = l i n e s (i) .Trim () . S p l i t (vbTab)

121

94 I f l ine . Length < 2 Then Continue For
95 Dim d As Date = Date . Parse (l ine (0))
96 xvalues .Add(d)
97 For j As Integer = 1 To l ine . GetUpperBound (0)
98 yvalues (j − 1) .Add(Double . Parse (l ine (j)))
99 Next

100 Next
101
102 xygraph . Clear ()
103
104 Dim myFont As New Font (” Ar ia l ” , 8 , FontStyle . Bold)
105
106 ’Add a background gr id f o r be t t e r chart r e a d a b i l i t y .
107 Dim gr id As New Grid ()
108 gr id . Vert icalGridType = gr id . GridType . Coarse
109 gr id . HorizontalGridType = gr id . GridType . Coarse
110 gr id . MajorGridPen = New Pen(Color . LightGray , 1 .0F)
111 xygraph .Add(g r id)
112
113 xygraph . BackColor = Color . White
114
115 xygraph . T i t l e = p l o t t i t l e
116 xygraph . T i t l eCo lo r = Color . Red
117
118 For i As Integer = 0 To p lo tcnt
119 p l o t s (i) = New LinePlot ()
120 p l o t s (i) . Color = l i n e c o l o r s (i Mod l i n e c o l o r s . GetUpperBound (0))
121 p l o t s (i) . AbscissaData = xvalues
122 p l o t s (i) . DataSource = yvalues (i)
123 p l o t s (i) . Label = names (i)
124 xygraph .Add(p l o t s (i))
125 Next
126
127 ’ Balance p lo t gene ra l s e t t i n g s .
128
129 xygraph . YAxis1 . Label = ”Deformasjon [cm] / Kraft [N] ”
130 xygraph . YAxis1 . Labe lOf f se tAbso lute = True
131 xygraph . YAxis1 . Labe lOf f s e t = 30
132 ’ xygraph . YAxis1 . WorldMin = 0
133 ’ xygraph . YAxis1 . WorldMax = 50
134
135 xygraph . XAxis1 . Label = ”Tid [sek] ”
136 xygraph . Padding = 15
137
138 Dim l egend As New Legend ()
139 legend . AttachTo (PlotSurface2D . XAxisPosit ion . Top , PlotSurface2D . YAxisPosit ion . Left)
140 legend . VerticalEdgePlacement = legend . Placement . I n s i d e
141 legend . HorizontalEdgePlacement = legend . Placement . I n s i d e
142 legend . BorderStyle = LegendBase . BorderType . Line
143 legend . XOffset = 10
144 legend . YOffset = 10
145 legend . Font = myFont
146 xygraph . Legend = legend
147
148 ’ Refresh su r f a c e s .
149 xygraph . Refresh ()
150
151 Response . Buf f e r = True
152 Response . ContentType = ”image/ Gif ”
153 xygraph . Bitmap . Save (memStream , System . Drawing . Imaging . ImageFormat . Gif)
154 memStream . WriteTo (Response . OutputStream)
155 Response .End()
156 End Sub
157
158
159
160 End Class

Listing A.11: Code for plot generator (plot.aspx.vb)

Listing A.12: Web page style sheet (styles.css)

1 body
2 {
3 font−fami ly : Tahoma ;
4 font−s i z e :10 px ;
5 }
6
7 a
8 {
9 font−fami ly : Tahoma ;

10 }
11 tab l e
12 {
13 font−s i z e :10 px ;
14 }

Listing A.12: Web page style sheet (styles.css)

A.3 Microcontroller Program for PWM-Control

Listing A.13: Main program (main.c)

1 #include ”main . h”
2

122

3 u in t 8 t busy = 0 ;
4 u i n t 8 t s t a r t c a l d e f l e c t i o n = 0 ;
5 u i n t 8 t s t a r t s e t d e f l e c t i o n = 0 ;
6 u i n t 8 t s t a r t c o n t d e f l e c t i o n = 0 ;
7
8 u in t 8 t s t a r t c a l c u r r e n t = 0 ;
9 u i n t 8 t s t a r t s e t c u r r e n t = 0 ;

10
11 u in t 8 t stop = 0 ;
12
13 u in t 8 t l a r g s [6] ;
14 u in t32 t defCal [3] [2] = {{0 ,0} ,{0 ,0} ,{0 ,0}} ;
15 u in t32 t curCal [3] [1 6] = {{0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} , {0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} ,

{0 ,0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0}} ;
16
17 int main () {
18
19
20 DDRB = 0x0F ;
21
22 initADC () ;
23 initUART () ;
24 initPwm () ;
25 in i tTimer () ;
26
27 s e i () ;
28
29 while (1){
30
31 i f (s t a r t c a l d e f l e c t i o n != 0) c a l D e f l e c t i o n () ;
32 i f (s t a r t s e t d e f l e c t i o n != 0) s e t D e f l e c t i o n () ;
33 i f (s t a r t c o n t d e f l e c t i o n != 0) con tDe f l e c t i on () ;
34
35 i f (s t a r t c a l c u r r e n t != 0) ca lCurrent () ;
36 i f (s t a r t s e t c u r r e n t != 0) setCurrent () ;
37 }
38
39 return 0 ;
40 }
41
42 void copyArgs () {
43 for (u i n t 8 t i = 0 ; i < 6 ; i++) l a r g s [i] = args [i] ;
44 }
45
46
47 /*
48 void s e t D e f l e c t i o n () {
49 // copyArgs () ;
50 s t a r t s e t d e f l e c t i o n = 0 ;
51
52 u in t32 t I ; // current
53 u in t32 t D; // d e f l e c t i o n
54
55 busy = 1 ;
56 stop = 0 ;
57
58 u in t 8 t pwm = 0;
59 // u in t32 t setValue = ((defCal [args [0]] [1] − defCal [args [0]] [0]) * (u i n t 8 t) args [1]) /255;
60 u in t32 t setValue ;
61
62 u in t 8 t cnt = 0 ;
63
64 whi le (stop == 0){
65 I = readVolt (ADC current [args [0]]) ; ;
66 D = readVolt (ADC deflect ion [args [0]]) ; ;
67
68 setValue = defCal [args [0]] [0] + (((defCal [args [0]] [1] − defCal [args [0]] [0]) * (u i n t 8 t) args [1])

/255) ;
69
70 i f (D < setValue){
71 i f (pwm <= 255−args [2]) pwm+=args [2] ;
72 } e l s e i f (D > setValue){
73 i f (pwm >= args [2]) pwm−=args [2] ;
74 }
75
76 setPwm(PWM ch[args [0]] , pwm) ;
77
78 // Verbose
79 i f (args [3] != 0){
80 i f ((cnt % 3) == 0){
81 sendUARTdec(pwm, 0) ;
82 sendUART(’ ’) ;
83 sendUARTdec(I , 3) ;
84 sendUART(’ ’) ;
85 sendUARTdecn(D, 3) ;
86 }
87 }
88 cnt++;
89
90 }
91
92 setPwm(PWM ch[args [0]] , 0) ;
93
94 busy = 0 ;
95 sendSuccess () ;
96 s t a r t s e t d e f l e c t i o n = 0 ;
97 }
98 */
99

100 void s e t D e f l e c t i o n () {
101
102 u in t32 t D; // d e f l e c t i o n
103 u in t32 t I ; // current
104
105 busy = 1 ;
106 stop = 0 ;
107
108
109 u in t 8 t pwm = 0;
110 u in t32 t setValue ;
111 u in t 8 t reg ;
112 u in t 8 t verbose ;
113 u in t 8 t vf ;

123

114
115 u in t32 t min ;
116 u in t32 t max ;
117 i n t 3 2 t span ;
118
119 u in t 8 t cnt = 0 ;
120 i n t 3 2 t e r r = 0 ;
121 i n t 3 2 t errP = 0 ;
122
123 min = defCal [0] [0] ;
124 max = defCal [0] [1] ;
125 span = max − min ;
126
127 while (1){
128 reg = args [1] ;
129 verbose = args [2] ;
130 vf = args [3] ;
131
132 setValue = min + (((max − min) * (u i n t 8 t) args [0]) /255) ;
133
134 D = readVolt (ADC deflect ion [0]) ;
135
136 i f (setValue > D){
137 e r r = setValue − D;
138 } else{
139 e r r = D − setValue ;
140 e r r *= −1;
141 }
142
143 errP = (e r r * 255) / span ;
144 errP = (errP * (i n t 3 2 t) reg) / 64 ;
145
146 i f (errP > 0){
147 i f (pwm > 255−(u in t32 t) errP){
148 pwm = 255;
149 } else{
150 pwm += (u in t32 t) errP ;
151 }
152 } else{
153 errP *= −1;
154 i f (pwm < (u in t32 t) errP){
155 pwm = 0;
156 } else{
157 pwm −= (u in t32 t) errP ;
158 }
159 }
160
161 i f (verbose && (cnt % vf) == 0) I = readVolt (ADC current [0]) ;
162
163 setPwm(PWM ch[0] , pwm) ;
164
165 //sendUARTnewline () ;
166
167 i f (verbose && (cnt % vf) == 0){
168 i f (verbose & 0x01){
169 sendUARTdec(pwm, 0) ;
170 sendUART(’ ’) ;
171 }
172
173 i f (verbose & 0x02){
174 sendUARTdec(D, 3) ;
175 sendUART(’ ’) ;
176 }
177
178 i f (verbose & 0x04){
179 sendUARTdec(I , 3) ;
180 sendUART(’ ’) ;
181 }
182
183 sendUARTnewline () ;
184
185 cnt = 0 ;
186 } else cnt++;
187
188 i f (stop==1) break ;
189 delay (10) ;
190 }
191
192 setPwm(PWM ch[0] , 0) ;
193
194
195 busy = 0 ;
196 sendSuccess () ;
197 s t a r t s e t d e f l e c t i o n = 0 ;
198 }
199
200 void con tDe f l e c t i on () {
201 s t a r t c o n t d e f l e c t i o n = 0 ;
202 copyArgs () ;
203
204 busy = 1 ;
205 u in t 8 t t = l a r g s [3] ;
206
207 stop = 0 ;
208 while (stop == 0){
209 for (u i n t 8 t i = 0 ; i < 3 ; i++){
210 i f (args [i] == 1){
211 sendUARTdec(readVolt (ADC deflect ion [i]) ,3) ;
212 sendUART(’ ’) ;
213 }
214 }
215 sendUARTnewline () ;
216 delay (t) ;
217 }
218 busy = 0 ;
219 s t a r t c o n t d e f l e c t i o n = 0 ;
220 sendSuccess () ;
221
222 }
223
224 void c a l D e f l e c t i o n () {
225 copyArgs () ;
226 s t a r t c a l d e f l e c t i o n = 0 ;

124

227
228 defCal [0] [0] = readVolt (ADC deflect ion [0]) ;
229 setPwm(PWM ch[0] , 2 5 5) ;
230 u in t32 t tmp = defCal [0] [0] ;
231
232 busy = 1 ;
233 stop = 0 ;
234 while (stop == 0){
235 delay (500) ;
236 defCal [0] [1] = readVolt (ADC deflect ion [0]) ;
237 i f (defCal [0] [1] − tmp < 10) break ; // Delta d e f l e c t i o n smal l − f i n i s h e d
238 tmp = defCal [0] [1] ;
239 }
240
241 setPwm(PWM ch[0] , 0) ;
242
243 sendUARTdec(defCal [0] [0] , 3) ;
244 sendUART(’ ’) ;
245 sendUARTdecn(defCal [0] [1] , 3) ;
246 busy = 0 ;
247 }
248
249 void setCurrent () {
250 s t a r t s e t c u r r e n t = 0 ;
251 copyArgs () ;
252 u in t32 t I ; // current
253 u in t32 t D; // d e f l e c t i o n
254
255 busy = 1 ;
256 stop = 0 ;
257
258 u in t 8 t pwm = 0;
259 u in t32 t setValue ;
260
261 u in t 8 t cnt = 0 ;
262
263 while (stop == 0){
264 I = readVolt (ADC current [args [0]]) ; ;
265 D = readVolt (ADC deflect ion [args [0]]) ; ;
266
267 setValue = curCal [l a r g s [0]] [l a r g s [1]] ;
268
269 i f (I < setValue){
270 i f (pwm <= 255−args [2]) pwm+=args [2] ;
271 } else i f (I > setValue){
272 i f (pwm >= args [2]) pwm−=args [2] ;
273 }
274
275 setPwm(PWM ch[args [0]] , pwm) ;
276
277 // Verbose
278 i f (args [3] != 0){
279 i f ((cnt % 3) == 0){
280 //sendUARTdec(pwm, 0) ;
281 //sendUART(’ ’) ;
282 //sendUARTdec(I , 3) ;
283 //sendUART(’ ’) ;
284 sendUARTdecn(D, 3) ;
285 }
286 }
287 cnt++;
288
289 }
290
291 setPwm(PWM ch[args [0]] , 0) ;
292
293 busy = 0 ;
294 sendSuccess () ;
295 s t a r t s e t d e f l e c t i o n = 0 ;
296 }
297
298
299 void ca lCurrent () {
300 s t a r t c a l c u r r e n t = 0 ;
301
302 i n t 3 2 t e r r = 0 ;
303 i n t 3 2 t errP = 0 ;
304
305 u in t32 t min = defCal [0] [0] ;
306 u in t32 t max = defCal [0] [1] ;
307 i n t 3 2 t span = max − min ;
308
309 // u in t32 t cur r ent s [1 6] ;
310 u in t32 t D, I , setValue ;
311 u in t 8 t pwm = 0;
312 stop = 0 ;
313 u in t 8 t reg = 150;
314
315
316 for (u i n t 8 t i = 0 ; i < 16 ; i++){
317
318 // setValue = defCal [0] [0] + (((defCal [0] [1] − defCal [0] [0]) * i * 16) /255) ;
319
320 setValue = min + (((max − min) * i * 16) /255) ;
321
322 curCal [l a r g s [0]] [i] = 0 ;
323 u in t16 t nca l = 1000;
324 for (u in t16 t j = 0 ; j < nca l ; j++){
325 D = readVolt (ADC deflect ion [0]) ;
326 I = readVolt (ADC current [0]) ;
327 i f (j > 49) curCal [l a r g s [0]] [i] += I ;
328
329
330
331 i f (setValue > D){
332 e r r = setValue − D;
333 } else{
334 e r r = D − setValue ;
335 e r r *= −1;
336 }
337
338 errP = (e r r * 255) / span ;
339 errP = (errP * (i n t 3 2 t) reg) / 64 ;

125

340
341 i f (errP > 0){
342 i f (pwm > 255−(u in t32 t) errP){
343 pwm = 255;
344 } else{
345 pwm += (u in t32 t) errP ;
346 }
347 } else{
348 errP *= −1;
349 i f (pwm < (u in t32 t) errP){
350 pwm = 0;
351 } else{
352 pwm −= (u in t32 t) errP ;
353 }
354 }
355
356
357 setPwm(PWM ch[0] , pwm) ;
358
359
360 i f (stop != 0){
361 setPwm(PWM ch[0] , 0) ;
362 sendSuccess () ;
363 s t a r t c a l c u r r e n t = 0 ;
364 return ;
365 }
366
367
368 /*
369 i f (D < setValue){
370 i f (pwm <= 255−100) pwm+=150;
371 } e l s e i f (D > setValue){
372 i f (pwm >= 100) pwm−=150;
373 }
374 setPwm(PWM ch[0] , pwm) ;
375
376 i f (stop != 0){
377 setPwm(PWM ch[0] , 0) ;
378 sendSuccess () ;
379 s t a r t c a l c u r r e n t = 0 ;
380 return ;
381 }
382 */
383
384 }
385
386 curCal [l a r g s [0]] [i] /= (ncal −50) ;
387
388 sendUARTdec(setValue , 3) ;
389 sendUART(’ ’) ;
390 sendUARTdecn(curCal [l a r g s [0]] [i] , 3) ;
391 }
392
393 setPwm(PWM ch[0] , 0) ;
394
395 s t a r t c a l c u r r e n t = 0 ;
396
397 }

Listing A.13: Main program (main.c)

Listing A.14: Header for main program (main.h)

1 #ifndef MAIN H
2 #define MAIN H 1
3
4 #include <s t d i n t . h>
5
6 #include ” uart . h”
7 #include ”pwm. h”
8 #include ”adc . h”
9 #include ” timer . h”

10 #include ” u t i l s . h”
11 #include ” timer . h”
12
13 int main () ;
14 void s e t D e f l e c t i o n () ;
15 void c a l D e f l e c t i o n () ;
16 void setCurrent () ;
17 void con tDe f l e c t i on () ;
18
19 void setCurrent () ;
20 void ca lCurrent () ;
21
22 void copyArgs () ;
23
24
25 extern u in t 8 t busy ;
26
27 extern u in t 8 t s t a r t c a l c u r r e n t ;
28 extern u in t 8 t s t a r t s e t c u r r e n t ;
29
30 extern u in t 8 t s t a r t c a l d e f l e c t i o n ;
31 extern u in t 8 t s t a r t s e t d e f l e c t i o n ;
32 extern u in t 8 t s t a r t c o n t d e f l e c t i o n ;
33
34 extern u in t 8 t stop ;
35
36 #endif

Listing A.14: Header for main program (main.h)

126

Listing A.15: Module for ADC operations (adc.c)

1 #include ”adc . h”
2
3 void initADC () {
4 //DDRADC &= ˜((1<<PINA0)) ;
5 DDRADC = 0x00 ;
6
7 //Ref : AVCC with cap to AREF
8 ADMUX = (0<<REFS1) |(1<<REFS0) |(0<<ADLAR) ;
9 ADCSRA = (1<<ADEN) |(1<<ADPS2) |(1<<ADPS1) |(1<<ADPS0) ;

10
11
12
13 readADC((1<<MUX0)) ;
14 }
15
16
17 u in t16 t readADC(u in t 8 t mux){
18 ADMUX = (ADMUX & 0b11100000) | mux;
19 ADCSRA |= (1<<ADSC) ;
20 while (ADCSRA & (1<<ADSC)) ;
21 return ADC;
22 }
23
24 u in t32 t readADCMiddel (u i n t 8 t mux, u i n t 8 t middel , u i n t16 t per iode){
25
26 ADMUX = (ADMUX & 0b11100000) | mux;
27
28 u in t32 t m = 0 ;
29 u in t 8 t i ;
30 for (i = 0 ; i < middel ; i++){
31 ADCSRA |= (1<<ADSC) ;
32 while (ADCSRA & (1<<ADSC)) ;
33 m += ADC;
34 delay (per iode) ;
35 }
36
37 return (u in t32 t) (m/middel) ;
38 }
39
40 u in t32 t readVolt (u i n t 8 t mux){
41 u in t32 t adc = readADCMiddel (mux, 5 , 1) ;
42 u in t32 t u = ((adc *1000) /1024) * 5 ; // Covert ADC => Volt
43 return u ;
44 }

Listing A.15: Module for ADC operations (adc.c)

Listing A.16: Header for ADC operations (adc.h)

1 #ifndef ADC H
2 #define ADC H 1
3
4 #import <avr / i o . h>
5 #import <u t i l / delay . h>
6 #import ” u t i l s . h”
7
8 #define DDRADC DDRA
9

10 #define ADC 0 0
11 #define ADC 1 1
12 #define ADC 2 2
13 #define ADC 3 3
14 #define ADC 4 4
15 #define ADC 5 5
16
17
18 u in t16 t readADC(u in t 8 t mux) ;
19 u in t32 t readADCMiddel (u i n t 8 t mux, u i n t 8 t middel , u i n t16 t per iode) ;
20
21 void initADC () ;
22 u in t32 t readVolt (u i n t 8 t mux) ;
23
24
25 #endif

Listing A.16: Header for ADC operations (adc.h)

Listing A.17: Module for command interpretation (interpreter.c)

1 #include ” i n t e r p r e t e r . h”
2
3 u in t32 t args [] = {0 ,0 ,0 ,0 ,0 ,0} ;
4 u i n t 8 t ADC current [] = {ADC 1 , ADC 4 , ADC 5} ;
5 u i n t 8 t ADC deflect ion [] = {ADC 0 , ADC 1 , ADC 2} ;
6 u i n t 8 t PWM ch [] = {PWM 0, PWM 1, PWM 2} ;
7
8 void analyzeCmd (char *cmd){
9 i f (busy != 0 && strncasecmp (”BUSY?” ,cmd , 5) == 0){

10 sendUARTprintln ((u i n t 8 t *) ” yes ”) ;
11 return ;
12 }
13
14 // IDN? − Returns i d e n t i f i c a t i o n
15 i f (strncasecmp (”IDN?” ,cmd , 4) == 0){
16 sendUARTprintln ((u i n t 8 t *) ” F l ex ino l uC regu l a t o r t e s t ”) ;
17
18 //PWM? − Returns PWM s e t t i n g f o r s p e c i f i e d channel

127

19 } else i f (strncasecmp (”PWM?” ,cmd , 4) == 0){
20 i f (readArgs ((u i n t 8 t *)cmd , 1) != 0){
21 sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! PWM? takes 1 argument”) ;
22 return ;
23 }
24 u in t 8 t pwm = getPwm(PWM ch[args [0]]) ;
25 sendUARTdecn(pwm, 0) ;
26
27
28
29 //PWM − Sets PWM value f o r s p e c i f i e d channel
30 } else i f (strncasecmp (”PWM” ,cmd , 3) == 0){
31 i f (readArgs ((u i n t 8 t *)cmd , 2) != 0){
32 sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! PWM takes 2 arguments”) ;
33 return ;
34 }
35 setPwm(PWM ch[args [0]] , args [1]) ;
36 return ;
37
38 //CURRENT? − Returns current f o r s p e c i f i e d channel
39 } else i f (strncasecmp (”CURRENT?” ,cmd , 7) == 0){
40 i f (readArgs ((u i n t 8 t *)cmd , 1) != 0){
41 sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! CURRENT? takes 1 argument”) ;
42 return ;
43 }
44
45 u in t32 t u = readVolt (ADC current [args [0]]) ;
46
47 sendUARTdecn(u , 3) ;
48
49 //DEFLECTION? − Returns d e f l e c t i o n f o r s p e c i f i e d channel
50 } else i f (strncasecmp (”DEFLECTION?” ,cmd , 11) == 0){
51 i f (readArgs ((u i n t 8 t *)cmd , 1) != 0){
52 sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! DEFLECTION? takes 1 argument”) ;
53 return ;
54 }
55 u in t32 t u = readVolt (ADC deflect ion [args [0]]) ;
56
57 sendUARTdecn(u , 3) ;
58
59
60 //CAL DEFLECTION
61 } else i f (strncasecmp (”CAL DEFLECTION” ,cmd , 14) == 0){
62 s t a r t c a l d e f l e c t i o n = 1 ;
63
64 //SET DEFLECTION
65 } else i f (strncasecmp (”SET DEFLECTION” ,cmd , 14) == 0){
66 i f (readArgs ((u i n t 8 t *)cmd , 4) != 0){
67 sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! SET DEFLECTION takes 4 arguments”) ;
68 return ;
69 }
70 s t a r t s e t d e f l e c t i o n = 1 ;
71
72
73 //CAL CURRENT
74 } else i f (strncasecmp (”CAL CURRENT” ,cmd , 11) == 0){
75 i f (readArgs ((u i n t 8 t *)cmd , 1) != 0){
76 sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! CAL CURRENT takes 1 argument”) ;
77 return ;
78 }
79 s t a r t c a l c u r r e n t = 1 ;
80
81 //SET CURRENT
82 } else i f (strncasecmp (”SET CURRENT” ,cmd , 11) == 0){
83 i f (readArgs ((u i n t 8 t *)cmd , 4) != 0){
84 sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! SET CURRENT takes 4 arguments”) ;
85 return ;
86 }
87 s t a r t s e t c u r r e n t = 1 ;
88
89 //CONT DEFLECTION − Sta r t s cont inu ing d e f l e c t i o n measurement
90 } else i f (strncasecmp (”CONT DEFLECTION” ,cmd , 15) == 0){
91 i f (readArgs ((u i n t 8 t *)cmd , 4) != 0){
92 sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! CONT DEFLECTION takes 4 arguments”) ;
93 return ;
94 }
95 s t a r t c o n t d e f l e c t i o n = 1 ;
96 sendSuccess () ;
97
98 //BUSY? − Returns busy s t a t e o f u−program
99 } else i f (strncasecmp (”BUSY?” ,cmd , 5) == 0){

100 sendUARTprintln ((u i n t 8 t *) ”no”) ;
101
102 //STOP − Stops the current operat ion
103 } else i f (strncasecmp (”STOP” ,cmd , 4) == 0){
104 stop = 1 ;
105
106 } else{
107 sendFa i lure ((u i n t 8 t *) ”Command not recogn ized ! ”) ;
108 }
109
110 }
111
112 u in t 8 t readArgs (u i n t 8 t *cmd , u i n t 8 t n){
113 u in t 8 t arg n = 0 ;
114 u in t 8 t s t a r t = 1 ;
115 while (*cmd && (*cmd != ’\n ’)){
116 i f (*cmd == ’ ’){
117 i f (s t a r t == 1) s t a r t = 0 ; else arg n++;
118 cmd++;
119 } else{
120 i f (s t a r t == 0){
121 args [arg n] = readArg (cmd) ;
122 //sendUARTdec(args [arg n] , 1) ;
123 while (*cmd && (*cmd != ’ ’) && (*cmd != ’\n ’)) cmd++;
124 } else{
125 cmd++;
126 }
127 }
128
129 }
130
131 i f (arg n+1 >= n && s t a r t ==0) return 0 ;

128

132 return 1 ;
133 }
134
135 u in t32 t readArg (u i n t 8 t *cmd){
136 u in t32 t v = 0 ;
137 u in t 8 t zero = ’ 0 ’ ;
138 while (*cmd && (*cmd != ’\n ’)){
139 i f (*cmd == ’ ’) return v ;
140 v *= 10;
141 v += (*cmd − zero) ;
142 cmd++;
143 }
144
145 return v ;
146 }
147
148 void sendSuccess () {
149 sendUARTprintln ((u i n t 8 t *) ”OK! ”) ;
150 }
151
152 void sendFa i lure (u i n t 8 t *message){
153 sendUARTprint ((u i n t 8 t *) ”ERR! ”) ;
154 sendUARTprintln (message) ;
155 }

Listing A.17: Module for command interpretation (interpreter.c)

Listing A.18: Header for command interpretation (interpreter.h)

1 #ifndef INTERPRETER H
2 #define INTERPRETER H 1
3
4 #include <s t r i n g . h>
5 #include ” uart . h”
6 #include ”main . h”
7 #include ”adc . h”
8
9 void analyzeCmd (char *cmd) ;

10 u in t 8 t readArgs (u i n t 8 t *cmd , u i n t 8 t n) ;
11 u in t32 t readArg (u i n t 8 t *cmd) ;
12
13 void sendSuccess () ;
14 void sendFa i lure (u i n t 8 t *message) ;
15
16 extern u in t32 t args [] ;
17 extern u in t 8 t ADC current [] ;
18 extern u in t 8 t ADC deflect ion [] ;
19 extern u in t 8 t PWM ch [] ;
20 #endif

Listing A.18: Header for command interpretation (interpreter.h)

Listing A.19: Module for PWM operations (pwm.c)

1 #include ”pwm. h”
2
3 void initPwm () {
4 DDRPWM1 |= (1<<OC0) ;
5 DDRPWM2 |= (1<<OC1A) |(1<<OC1B) ;
6
7
8 //Timer/ counter 0 (8 b i t)
9 // Fast PWM, inve r t i n g mode (f o r å f å ’ ren ’ 0) , p r e s c a l i n g 256 (225Hz)

10 TCCR0 = (1<<WGM01) |(1<<WGM00) |(1<<COM01) |(1<<COM00) |(0<<CS02) |(0<<CS01) |(1<<CS00) ;
11 OCR0 = 255;
12
13 //Timer/ counter 1 (16 b i t)
14 // Fast PWM 8 bit , i nv e r t i n g mode (f o r å f å ’ ren ’ 0) , p r e s c a l i n g 256 (225Hz)
15 TCCR1A = (1<<COM1A1) |(0<<COM1A0) |(1<<COM1B1) |(1<<COM1B0) |(0<<FOC1A) |(0<<FOC1B) |(0<<WGM11) |(1<<WGM10) ;
16 TCCR1B = (0<<ICNC1) |(0<<ICES1) |(0<<WGM13) |(1<<WGM12) |(0<<CS12) |(0<<CS11) |(1<<CS10) ;
17
18 OCR1A = 255;
19 OCR1B = 255;
20
21 }
22
23 void setPwm(u in t 8 t channel , u i n t 8 t value){
24 switch (channel){
25 case PWM 0: OCR0 = 255−value ; break ;
26 case PWM 1: OCR1A = 255−value ; break ;
27 case PWM 2: OCR1B = 255−value ; break ;
28 }
29 }
30
31 u in t 8 t getPwm(u in t 8 t channel){
32 switch (channel){
33 case PWM 0: return 255−(u i n t 8 t)OCR0;
34 case PWM 1: return 255−(u i n t 8 t)OCR1A;
35 case PWM 2: return 255−(u i n t 8 t)OCR1B;
36 }
37 return 0 ;
38 }

Listing A.19: Module for PWM operations (pwm.c)

Listing A.20: Header for PWM operations (pwm.h)

129

1 #ifndef PWM H
2 #define PWM H 1
3
4 #import <avr / i o . h>
5
6 #define DDRPWM1 DDRB
7 #define DDRPWM2 DDRD
8
9 #define OC0 PINB3

10 #define OC1A PIND5
11 #define OC1B PIND4
12
13 #define PWM 0 0
14 #define PWM 1 1
15 #define PWM 2 2
16
17 void initPwm () ;
18 void setPwm(u in t 8 t channel , u i n t 8 t value) ;
19 u i n t 8 t getPwm(u in t 8 t channel) ;
20
21 #endif

Listing A.20: Header for PWM operations (pwm.h)

Listing A.21: Module for Timer/Counter operations (timer.c)

1 #include ” timer . h”
2
3 u in t 8 t timCnt = 0 ;
4
5 void in i tTimer () {
6 //Timer 2 , CTC−mode (TOP=OCR2) , p r e s c a l e r 1024
7 TCCR2 = (1<<WGM21) |(0<<WGM20) |(1<<CS22) |(1<<CS21) |(1<<CS20) ;
8
9 OCR2 = 239;

10
11 TIMSK |= (1<<OCIE2) ;
12 }
13
14
15 ISR(SIG OUTPUT COMPARE2)
16 {
17 timCnt = (timCnt+1) % 6 ;
18 // timCnt == 0 => 10ms
19 i f (timCnt == 0) PORTB ˆ= 0x01 ;
20 return ;
21 }

Listing A.21: Module for Timer/Counter operations (timer.c)

Listing A.22: Header for Timer/Counter operations (timer.h)

1 #ifndef TIMER H
2 #define TIMER H 1
3
4 #import <avr / i o . h>
5 #import <avr / i n t e r rup t . h>
6
7 void in i tTimer () ;
8
9 #endif

Listing A.22: Header for Timer/Counter operations (timer.h)

Listing A.23: Module for UART operations (uart.c)

1 #include ” uart . h”
2
3 char rx buf [r x b u f s i z e] ; // Rx−bu f f e r
4 u i n t 8 t r x t a i l = 0 ; // Rx−bu f f e r index
5
6
7 void initUART () {
8
9 UART DDR |= (1<<UART TX) ;

10 UART DDR &= ˜(1<<UART RX) ;
11
12 UBRRH = (u in t 8 t) (MY UBRR >> 8) ;
13 UBRRL = (u in t 8 t)MY UBRR;
14 UCSRB = (1<<RXEN) |(1<<TXEN) |(1<<RXCIE) ;
15 UCSRC = (1<<URSEL) |(3<<UCSZ0) ;
16 }
17
18 void sendUART(u in t 8 t c){
19 while (! (UCSRA & (1<<UDRE))) ;
20 UDR = c ;
21 }
22
23 void sendUARTprintln (u i n t 8 t * s){
24 sendUARTprint (s) ;
25 sendUARTnewline () ;
26 }
27

130

28
29 void sendUARTprint (u i n t 8 t * s){
30 while (* s){
31 sendUART(* s) ;
32 s++;
33 }
34 }
35
36 /*
37 void sendUARTbyte (u i n t 8 t b){
38 u in t 8 t i = 1 ;
39 f o r (i = 0 ; i < 8 ; i++){
40 i f ((b & i) == 0){
41 sendUART(’ 0 ’) ;
42 } e l s e {
43 sendUART(’ 1 ’) ;
44 }
45 }
46 }
47 */
48
49 void sendUARTint (u in t32 t n){
50 char s [1 0] ;
51 u i n t 8 t i = 0 ;
52 while (n > 0){
53 s [i ++] = ’ 0 ’ + (n % 10) ;
54 n /= 10 ;
55 }
56
57 i f (i ==0){
58 sendUART(’ 0 ’) ;
59 } else{
60 for (u i n t 8 t j = i ; j > 0 ; j−−){
61 sendUART(s [j −1]) ;
62 }
63 }
64 }
65
66 void sendUARTdec(u in t32 t n , u i n t 8 t dec){
67 char s [1 0] ;
68 u i n t 8 t i = 0 ;
69 while (n > 0){
70 s [i ++] = ’ 0 ’ + (n % 10) ;
71 n /= 10 ;
72 }
73
74 i f (i ==0){
75 sendUART(’ 0 ’) ;
76 } else i f (i > 0 && dec >= i){
77 sendUARTprint ((u i n t 8 t *) ” 0 . ”) ;
78 for (u i n t 8 t j = dec ; j > 0 ; j−−){
79 i f (j > i){
80 sendUART(’ 0 ’) ;
81 } else{
82 sendUART(s [j −1]) ;
83 }
84 }
85 } else{
86 for (u i n t 8 t j = i ; j > 0 ; j−−){
87 i f (j == dec) sendUART(’ . ’) ;
88 sendUART(s [j −1]) ;
89 }
90 }
91 }
92
93 void sendUARTdecn(u in t32 t n , u i n t 8 t dec){
94 sendUARTdec(n , dec) ;
95 sendUARTnewline () ;
96 }
97
98 void sendUARTnewline () {
99 sendUARTprint ((u i n t 8 t *) newl ine) ;

100 }
101
102 char readUART() {
103 while (! (UCSRA & (1<<RXC))) ;
104
105 return UDR;
106 }
107
108
109 ISR(SIG UART RECV)
110 {
111 char data = UDR;
112
113 i f (r x t a i l == rx bu f s i z e −1){
114 // Buf fe r f u l l
115 r x t a i l = 0 ;
116 sendUARTprintln ((u i n t 8 t *) ” Buf f e r f u l l ! Wait f o r ’OK’ be fo r e sending a new command”) ;
117 } else{
118 rx buf [r x t a i l ++] = data ;
119 i f (data==’\n ’){
120 analyzeCmd (rx buf) ;
121 r x t a i l = 0 ;
122 }
123 }
124
125 return ;
126 }

Listing A.23: Module for UART operations (uart.c)

Listing A.24: Header for UART operations (uart.h)

1 #ifndef UART H
2 #define UART H 1
3

131

4 #import <avr / i o . h>
5 #import <u t i l / delay . h>
6 #import <avr / i n t e r rup t . h>
7 #include <avr /eeprom . h>
8 #include ” i n t e r p r e t e r . h”
9

10 #define CLOCK F CPU
11 #define BAUD 57600
12 #define MY UBRR ((CLOCK) /((BAUD) *16L)−1)
13
14 #define UART DDR DDRD
15 #define UART TX PD1
16 #define UART RX PD0
17
18 #define newl ine ”\n”
19
20 void initUART () ;
21 void sendUART(u in t 8 t c) ;
22 void sendUARTprintln (u i n t 8 t * s) ;
23 void sendUARTprint (u i n t 8 t * s) ;
24 void sendUARTbyte (u i n t 8 t b) ;
25 void sendUARTint (u in t32 t n) ;
26 void sendUARTdec(u in t32 t n , u i n t 8 t dec) ;
27 void sendUARTdecn(u in t32 t n , u i n t 8 t dec) ;
28 void sendUARTnewline () ;
29 char readUART() ;
30
31
32 #define r x b u f s i z e 50
33
34 #endif

Listing A.24: Header for UART operations (uart.h)

Listing A.25: Utilities module (utils.c)

1 #include ” u t i l s . h”
2
3 void delay (u in t16 t ms){
4 while (ms > 16){
5 delay ms (16) ;
6 ms −= 16;
7 }
8
9 delay ms (ms) ;

10 }

Listing A.25: Utilities module (utils.c)

Listing A.26: Header for utilities module (utils.h)

1 #ifndef UTILS H
2 #define UTILS H 1
3
4 #import <u t i l / delay . h>
5
6 void delay (u in t16 t ms) ;
7
8
9 #endif

Listing A.26: Header for utilities module (utils.h)

A.4 Microcontroller Program for Finger Control

The below code is the implementation of the program described in section 4.5.4.

Listing A.27: Main program (main.c)

1 #include ”main . h”
2
3 u in t 8 t busy = 0 ;
4 u i n t 8 t s t a r t c o n t c u r r e n t = 0 ;
5 u i n t 8 t s t a r t c a l c u r r e n t = 0 ;
6 u i n t 8 t s t a r t s e t c u r r e n t = 0 ;
7 u i n t 8 t s t a r t c o n t d e f l e c t i o n = 0 ;
8 u i n t 8 t s t a r t c o n t c u r r e n t a n d d e f l e c t i o n = 0 ;
9 u i n t 8 t s t a r t c a l d e f l e c t i o n = 0 ;

10 u in t 8 t s t a r t s e t d e f l e c t i o n = 0 ;
11 u in t 8 t s t a r t s e t d e f l e c t i o n s = 0 ;
12 u in t 8 t s t a r t c o n t f o r c e = 0 ;
13 u in t 8 t s t a r t s e t f o r c e = 0 ;
14
15 u in t 8 t s t a r t f a s t = 0 ;
16 u in t 8 t stop = 0 ;
17
18 u in t 8 t l a r g s [6] ;
19 u in t16 t defCal [3] [2] = {{0 ,0} ,{0 ,0} ,{0 ,0}} ;

132

20 u in t32 t curCal [3] [1 6] = {{0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} , {0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0} ,
{0 ,0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0}} ;

21
22 u in t16 t e dc0 min EEMEM = 0x0000 ;
23 u in t16 t e dc0 max EEMEM = 0x0000 ;
24 u in t16 t e dc1 min EEMEM = 0x0000 ;
25 u in t16 t e dc1 max EEMEM = 0x0000 ;
26 u in t16 t e dc2 min EEMEM = 0x0000 ;
27 u in t16 t e dc2 max EEMEM = 0x0000 ;
28
29 int main () {
30
31 wdt d i sab l e () ;
32
33 DDRB = 0x0F ;
34 PORTB = 0x00 ;
35 DDRD = (1<<PIND7) ;
36 PORTD = 0x00 ;
37
38 initPwm () ;
39 initADC () ;
40 initUART () ;
41 in i tTimer () ;
42
43 readEEMEM() ;
44
45 s e i () ;
46
47 PORTD |= (1<<PIND7) ;
48 delay (200) ;
49 PORTD &= ˜(1<<PIND7) ;
50
51
52 while (1){
53
54
55 i f (s t a r t c o n t c u r r e n t != 0) contCurrent () ;
56 i f (s t a r t c a l c u r r e n t != 0) ca lCurrent () ;
57 i f (s t a r t s e t c u r r e n t != 0) setCurrent () ;
58
59 i f (s t a r t c o n t c u r r e n t a n d d e f l e c t i o n != 0) contCurrentAndDef lect ion () ;
60
61 i f (s t a r t c o n t d e f l e c t i o n != 0) con tDe f l e c t i on () ;
62 i f (s t a r t c a l d e f l e c t i o n != 0) c a l D e f l e c t i o n () ;
63 i f (s t a r t s e t d e f l e c t i o n != 0) s e t D e f l e c t i o n () ;
64
65 i f (s t a r t s e t d e f l e c t i o n s != 0) s e t D e f l e c t i o n s () ;
66
67 i f (s t a r t c o n t f o r c e != 0) contForce () ;
68 i f (s t a r t s e t f o r c e != 0) setForce () ;
69
70 i f (s t a r t f a s t != 0) fastLoop () ;
71 }
72
73 return 0 ;
74 }
75
76 void copyArgs () {
77 for (u i n t 8 t i = 0 ; i < 6 ; i++) l a r g s [i] = args [i] ;
78 }
79
80 void contCurrent () {
81 copyArgs () ;
82
83 busy = 1 ;
84 u in t 8 t t = l a r g s [3] ;
85 // f o r (u i n t 8 t i = 0 ; i < 3 ; i++) i f (args [i] == 1) t −= 3;
86 stop = 0 ;
87 while (! stop){
88 for (u i n t 8 t i = 0 ; i < 3 ; i++){
89 i f (args [i] == 1){
90 sendUARTdec(readVolt (ADC current [i]) ,3) ;
91 sendUART(’ ’) ;
92 }
93 }
94 sendUARTnewline () ;
95 delay (t) ;
96 }
97 busy = 0 ;
98 sendSuccess () ;
99

100 s t a r t c o n t c u r r e n t = 0 ;
101 }
102
103 void con tDe f l e c t i on () {
104 s t a r t c o n t d e f l e c t i o n = 0 ;
105 copyArgs () ;
106
107 busy = 1 ;
108 u in t 8 t t = l a r g s [3] ;
109
110 stop = 0 ;
111 while (! stop){
112 for (u i n t 8 t i = 0 ; i < 3 ; i++){
113 i f (args [i] == 1){
114 sendUARTdec(readVolt (ADC deflect ion [i]) ,3) ;
115 sendUART(’ ’) ;
116 }
117 }
118 sendUARTnewline () ;
119 delay (t) ;
120 }
121 busy = 0 ;
122 s t a r t c o n t d e f l e c t i o n = 0 ;
123 sendSuccess () ;
124
125 }
126
127 void contForce () {
128 copyArgs () ;
129
130 busy = 1 ;
131 u in t 8 t t = l a r g s [3] ;

133

132 // f o r (u i n t 8 t i = 0 ; i < 3 ; i++) i f (args [i] == 1) t −= 3;
133 stop = 0 ;
134 while (! stop){
135 for (u i n t 8 t i = 0 ; i < 3 ; i++){
136 i f (args [i] == 1){
137 sendUARTdec(readVolt (ADC force [i]) ,3) ;
138 sendUART(’ ’) ;
139 }
140 }
141 sendUARTnewline () ;
142 delay (t) ;
143 }
144 busy = 0 ;
145 sendSuccess () ;
146 s t a r t c o n t f o r c e = 0 ;
147 }
148
149 void contCurrentAndDef lect ion () {
150 copyArgs () ;
151
152 s t a r t c o n t c u r r e n t a n d d e f l e c t i o n = 0 ;
153 busy = 1 ;
154 u in t 8 t t = l a r g s [6] ;
155 // f o r (u i n t 8 t i = 0 ; i < 6 ; i++) i f (l a r g s [i] == 1) t −= 10;
156 stop = 0 ;
157 while (stop == 0){
158 for (u i n t 8 t i = 0 ; i < 3 ; i++){
159 i f (l a r g s [i] == 1){
160 sendUARTdec(readVolt (ADC current [i]) ,3) ;
161 sendUART(’ ’) ;
162 }
163 }
164
165 for (u i n t 8 t i = 0 ; i < 3 ; i++){
166 i f (l a r g s [i +3] == 1){
167 sendUARTdec(readVolt (ADC deflect ion [i]) ,3) ;
168 sendUART(’ ’) ;
169 }
170 }
171 sendUARTnewline () ;
172 delay (t) ;
173 }
174 busy = 0 ;
175 sendSuccess () ;
176 }
177
178 void s e t D e f l e c t i o n () {
179 copyArgs () ;
180 s t a r t s e t d e f l e c t i o n = 0 ;
181
182 u in t32 t D; // d e f l e c t i o n
183
184 busy = 1 ;
185 stop = 0 ;
186
187 u in t32 t min = defCal [l a r g s [0]] [0] ;
188 u in t32 t max = defCal [l a r g s [0]] [1] ;
189
190 u in t 8 t pwm = 0;
191 u in t32 t setValue = min + (((max − min) * (u i n t 8 t) l a r g s [1]) /255) ;
192
193
194
195 sendUARTdecn(setValue , 3) ;
196
197 u in t 8 t cnt = 0 ;
198
199 while (1){
200 D = readVolt (ADC deflect ion [l a r g s [0]]) ; ;
201
202 i f (D < setValue){
203 i f (pwm <= 255−args [2]) pwm+=l a r g s [2] ;
204 } else i f (D > setValue){
205 i f (pwm >= args [2]) pwm−=l a r g s [2] ;
206 }
207
208 setPwm(PWM ch[l a r g s [0]] , pwm) ;
209
210 // Verbose
211 i f (l a r g s [3] != 0){
212 i f ((cnt % 30) == 0){
213 sendUARTdec(pwm, 0) ;
214 sendUART(’ ’) ;
215 //sendUARTdec(I , 3) ;
216 //sendUART(’ ’) ;
217 sendUARTdecn(D, 3) ;
218 }
219 }
220 cnt++;
221 i f (stop==1) break ;
222 delay (10) ;
223
224 }
225
226 setPwm(PWM ch[l a r g s [0]] , 0) ;
227
228 busy = 0 ;
229 sendSuccess () ;
230 s t a r t s e t d e f l e c t i o n = 0 ;
231 }
232
233
234 void s e t D e f l e c t i o n s () {
235
236 u in t32 t D [3] ; // d e f l e c t i o n
237 u in t32 t F [3] ; // f o r c e
238
239 busy = 1 ;
240 stop = 0 ;
241
242
243 u in t 8 t pwm[3] = {0 , 0 , 0} ;
244 u in t32 t setValues [3] ;

134

245 u in t 8 t reg ;
246 u in t 8 t verbose ;
247 u in t 8 t vf ;
248
249 u in t32 t min [3] ;
250 u in t32 t max [3] ;
251 i n t 3 2 t span [3] ;
252
253 u in t 8 t cnt = 0 ;
254 i n t 3 2 t e r r = 0 ;
255 i n t 3 2 t errP = 0 ;
256
257 for (u i n t 8 t i = 0 ; i < 3 ; i++){
258 min [i] = defCal [i] [0] ;
259 max [i] = defCal [i] [1] ;
260 span [i] = max [i] − min [i] ;
261 }
262
263 while (1){
264 reg = args [3] ;
265 verbose = args [4] ;
266 vf = args [5] ;
267
268 for (u i n t 8 t i = 0 ; i < 3 ; i++){
269 setValues [i] = min [i] + (((max [i] − min [i]) * (u i n t 8 t) args [i]) /255) ;
270 //sendUARTdec(setValues [i] , 3) ;
271
272 D[i] = readVolt (ADC deflect ion [i]) ;
273
274 i f (se tValues [i] > D[i]) {
275 e r r = setValues [i] − D[i] ;
276 } else{
277 e r r = D[i] − setValues [i] ;
278 e r r *= −1;
279 }
280
281 errP = (e r r * 255) / span [i] ;
282 errP = (errP * (i n t 3 2 t) reg) / 64 ;
283
284 i f (errP > 0){
285 i f (pwm[i] > 255−(u in t32 t) errP){
286 pwm[i] = 255 ;
287 } else{
288 pwm[i] += (u in t32 t) errP ;
289 }
290 } else{
291 errP *= −1;
292 i f (pwm[i] < (u in t32 t) errP){
293 pwm[i] = 0 ;
294 } else{
295 pwm[i] −= (u in t32 t) errP ;
296 }
297 }
298
299 /*
300 i f (D[i] < setValues [i]) {
301 i f (pwm[i] <= 255− reg) pwm[i]+=reg ;
302 } e l s e i f (D[i] > setValues [i]) {
303 i f (pwm[i] >= reg) pwm[i]−=reg ;
304 }
305 */
306
307 i f (verbose && (cnt % vf) == 0) F [i] = readVolt (ADC force [i]) ;
308
309 setPwm(PWM ch[i] , pwm[i]) ;
310 }
311 //sendUARTnewline () ;
312
313 i f (verbose && (cnt % vf) == 0){
314 i f (verbose & 0x01){
315 for (u i n t 8 t i = 0 ; i < 3 ; i++){
316 sendUARTdec(pwm[i] , 0) ;
317 sendUART(’ ’) ;
318 }
319 }
320
321 i f (verbose & 0x02){
322 for (u i n t 8 t i = 0 ; i < 3 ; i++){
323 sendUARTdec(D[i] , 3) ;
324 sendUART(’ ’) ;
325 }
326 }
327
328 i f (verbose & 0x04){
329 for (u i n t 8 t i = 0 ; i < 3 ; i++){
330 sendUARTdec(F [i] , 3) ;
331 sendUART(’ ’) ;
332 }
333 }
334
335 sendUARTnewline () ;
336
337 cnt = 0 ;
338 } else cnt++;
339
340 i f (stop==1) break ;
341 }
342
343 for (u i n t 8 t i = 0 ; i < 3 ; i++){
344 setPwm(PWM ch[i] , 0) ;
345 }
346
347 busy = 0 ;
348 sendSuccess () ;
349 s t a r t s e t d e f l e c t i o n s = 0 ;
350 }
351
352 void se tForce () {
353 copyArgs () ;
354
355 u in t32 t F ; // f o r c e
356
357 busy = 1 ;

135

358 stop = 0 ;
359
360 u in t 8 t pwm = 0;
361 u in t32 t setValue = l a r g s [1] ;
362
363 u in t 8 t cnt = 0 ;
364
365 while (1){
366 F = readVolt (ADC force [l a r g s [0]]) ; ;
367
368
369 i f (F < setValue){
370 i f (pwm <= 255−args [2]) pwm+=l a r g s [2] ;
371 } else i f (F > setValue){
372 i f (pwm >= args [2]) pwm−=l a r g s [2] ;
373 }
374
375 setPwm(PWM ch[l a r g s [0]] , pwm) ;
376
377 // Verbose
378 i f (l a r g s [3] != 0){
379 i f ((cnt % 30) == 0){
380 //sendUARTdec(pwm, 0) ;
381 //sendUART(’ ’) ;
382 //sendUARTdec(I , 3) ;
383 //sendUART(’ ’) ;
384 sendUARTdecn(F , 3) ;
385 }
386 }
387 cnt++;
388 i f (stop==1) break ;
389 delay (10) ;
390
391 }
392
393 setPwm(PWM ch[l a r g s [0]] , 0) ;
394
395 busy = 0 ;
396 sendSuccess () ;
397 s t a r t s e t f o r c e = 0 ;
398 }
399
400 void c a l D e f l e c t i o n () {
401 copyArgs () ;
402 s t a r t c a l d e f l e c t i o n = 0 ;
403
404 for (u i n t 8 t i = 0 ; i < 3 ; i++){
405 defCal [i] [0] = readVolt (ADC deflect ion [i]) ;
406 setPwm(PWM ch[i] , 2 55) ;
407 u in t32 t tmp = defCal [i] [0] ;
408
409 busy = 1 ;
410 stop = 0 ;
411 delay (1500) ;
412 while (stop == 0){
413
414 delay (500) ;
415 defCal [i] [1] = readVolt (ADC deflect ion [i]) ;
416 i f (defCal [i] [1]− tmp < 10) break ; // Delta d e f l e c t i o n smal l − f i n i s h e d
417 tmp = defCal [i] [1] ;
418 }
419
420 setPwm(PWM ch[i] , 0) ;
421 sendUARTint (i) ;
422 sendUARTprint ((u i n t 8 t *) ” − min : ”) ;
423 sendUARTdec(defCal [i] [0] , 3) ;
424 sendUARTprint ((u i n t 8 t *) ” max : ”) ;
425 sendUARTdecn(defCal [i] [1] , 3) ;
426
427 delay (2000) ;
428 }
429 busy = 0 ;
430 s t a r t c a l d e f l e c t i o n = 0 ;
431 writeEEMEM() ;
432 }
433
434
435 void setCurrent () {
436 s t a r t s e t c u r r e n t = 0 ;
437 copyArgs () ;
438 u in t32 t I ; // current
439 u in t32 t D; // d e f l e c t i o n
440
441 busy = 1 ;
442 stop = 0 ;
443
444 u in t 8 t pwm = 0;
445 u in t32 t setValue ;
446
447 u in t 8 t cnt = 0 ;
448
449 while (stop == 0){
450 I = readVolt (ADC current [args [0]]) ; ;
451 D = readVolt (ADC deflect ion [args [0]]) ; ;
452
453 setValue = curCal [l a r g s [0]] [l a r g s [1]] ;
454
455 i f (I < setValue){
456 i f (pwm <= 255−args [2]) pwm+=args [2] ;
457 } else i f (I > setValue){
458 i f (pwm >= args [2]) pwm−=args [2] ;
459 }
460
461 setPwm(PWM ch[args [0]] , pwm) ;
462
463 // Verbose
464 i f (args [3] != 0){
465 i f ((cnt % 3) == 0){
466 sendUARTdec(pwm, 0) ;
467 sendUART(’ ’) ;
468 sendUARTdec(I , 3) ;
469 sendUART(’ ’) ;
470 sendUARTdecn(D, 3) ;

136

471 }
472 }
473 cnt++;
474
475 }
476
477 setPwm(PWM ch[args [0]] , 0) ;
478
479 busy = 0 ;
480 sendSuccess () ;
481 s t a r t s e t d e f l e c t i o n = 0 ;
482 }
483
484
485 void ca lCurrent () {
486 s t a r t c a l c u r r e n t = 0 ;
487
488 // u in t32 t cur r ent s [1 6] ;
489 u in t32 t D, I , setValue ;
490 u in t 8 t pwm = 0;
491 stop = 0 ;
492 for (u i n t 8 t n = 0 ; n < 20 ; n++){
493
494 for (u i n t 8 t i = 0 ; i < 16 ; i++){
495
496 setValue = defCal [0] [0] + (((defCal [0] [1] − defCal [0] [0]) * i * 16) /255) ;
497 curCal [l a r g s [0]] [i] = 0 ;
498 for (u i n t 8 t j = 0 ; j < 150 ; j++){
499 D = readVolt (ADC deflect ion [0]) ;
500 I = readVolt (ADC current [0]) ;
501 i f (j > 49) curCal [l a r g s [0]] [i] += I ;
502 i f (D < setValue){
503 i f (pwm <= 255−100) pwm+=100;
504 } else i f (D > setValue){
505 i f (pwm >= 100) pwm−=100;
506 }
507 setPwm(PWM ch[0] , pwm) ;
508
509 i f (stop != 0){
510 setPwm(PWM ch[0] , 0) ;
511 sendSuccess () ;
512 s t a r t c a l c u r r e n t = 0 ;
513 return ;
514 }
515 }
516
517 curCal [l a r g s [0]] [i] /= 100 ;
518
519 sendUARTdec(setValue , 3) ;
520 sendUART(’ ’) ;
521 sendUARTdecn(curCal [l a r g s [0]] [i] , 3) ;
522 }
523
524 setPwm(PWM ch[0] , 0) ;
525
526 s t a r t c a l c u r r e n t = 0 ;
527 sendUARTint (n+1) ;
528 // sendUARTprintln ((u i n t 8 t *) ”OK! ”) ;
529 // sendSuccess () ;
530 delay (10000) ;
531 }
532 }
533
534 void fastLoop () {
535
536 u in t32 t D;
537
538
539 u in t 8 t pwm = 0;
540 u in t 8 t ch = args [0] ;
541 u in t32 t setValue = defCal [ch] [0] + (((defCal [ch] [1] − defCal [ch] [0]) * args [1]) /255) ;
542 u in t 8 t p = (u in t 8 t) args [2] ;
543
544 stop = 0 ;
545 while (stop == 0){
546 D = readVolt (ADC deflect ion [ch]) ; ;
547
548 i f (D < setValue){
549 i f (pwm <= 255−p) pwm+=p ;
550 } else i f (D > setValue){
551 i f (pwm >= p) pwm−=p ;
552 }
553
554 setPwm(PWM ch[ch] , pwm) ;
555
556 }
557 s t a r t f a s t = 0 ;
558 setPwm(PWM ch[ch] , 0) ;
559
560
561 }
562
563 ISR(BADISR vect)
564 {
565 PORTD ˆ= (1 << PIND7) ;
566 }
567
568
569 void readEEMEM() {
570 defCal [0] [0] = eeprom read word(&e dc0 min) ;
571 defCal [0] [1] = eeprom read word(&e dc0 max) ;
572 defCal [1] [0] = eeprom read word(&e dc1 min) ;
573 defCal [1] [1] = eeprom read word(&e dc1 max) ;
574 defCal [2] [0] = eeprom read word(&e dc2 min) ;
575 defCal [2] [1] = eeprom read word(&e dc2 max) ;
576
577 }
578
579 void writeEEMEM() {
580 eeprom write word(&e dc0 min , defCal [0] [0]) ;
581 eeprom write word(&e dc0 max , defCal [0] [1]) ;
582 eeprom write word(&e dc1 min , defCal [1] [0]) ;
583 eeprom write word(&e dc1 max , defCal [1] [1]) ;

137

584 eeprom write word(&e dc2 min , defCal [2] [0]) ;
585 eeprom write word(&e dc2 max , defCal [2] [1]) ;
586 }

Listing A.27: Main program (main.c)

Listing A.28: Header for main program (main.h)

1 #ifndef MAIN H
2 #define MAIN H 1
3
4 #include <s t d i n t . h>
5 #include <avr /wdt . h>
6 #include <avr /eeprom . h>
7
8 #include ” uart . h”
9 #include ”pwm. h”

10 #include ”adc . h”
11 #include ” timer . h”
12 #include ” u t i l s . h”
13 #include ” timer . h”
14
15 int main () ;
16 void contCurrent () ;
17 void con tDe f l e c t i on () ;
18 void contCurrentAndDef lect ion () ;
19 void contForce () ;
20 void se tForce () ;
21 void s e t D e f l e c t i o n () ;
22 void s e t D e f l e c t i o n s () ;
23 void c a l D e f l e c t i o n () ;
24 void setCurrent () ;
25 void ca lCurrent () ;
26 void copyArgs () ;
27
28 void fastLoop () ;
29
30 void readEEMEM() ;
31 void writeEEMEM() ;
32
33 extern u in t 8 t busy ;
34 extern u in t 8 t s t a r t c o n t c u r r e n t ;
35 extern u in t 8 t s t a r t c a l c u r r e n t ;
36 extern u in t 8 t s t a r t s e t c u r r e n t ;
37 extern u in t 8 t s t a r t c o n t d e f l e c t i o n ;
38 extern u in t 8 t s t a r t c o n t c u r r e n t a n d d e f l e c t i o n ;
39 extern u in t 8 t s t a r t c a l d e f l e c t i o n ;
40 extern u in t 8 t s t a r t s e t d e f l e c t i o n ;
41 extern u in t 8 t s t a r t s e t d e f l e c t i o n s ;
42 extern u in t 8 t s t a r t c o n t f o r c e ;
43 extern u in t 8 t s t a r t s e t f o r c e ;
44
45 extern u in t 8 t stop ;
46
47 extern u in t 8 t s t a r t f a s t ;
48
49 #endif

Listing A.28: Header for main program (main.h)

Listing A.29: Module for ADC operations (adc.c)

1 #include ”adc . h”
2
3 void initADC () {
4 //DDRADC &= ˜((1<<PINA0)) ;
5 DDRADC = 0x00 ;
6
7 //Ref : AVCC with cap to AREF
8 ADMUX = (0<<REFS1) |(1<<REFS0) |(0<<ADLAR) ;
9 ADCSRA = (1<<ADEN) |(1<<ADPS2) |(1<<ADPS1) |(1<<ADPS0) ;

10
11
12
13 readADC((1<<MUX0)) ;
14 }
15
16
17 u in t16 t readADC(u in t 8 t mux){
18 ADMUX = (ADMUX & 0b11100000) | mux;
19 ADCSRA |= (1<<ADSC) ;
20 while (ADCSRA & (1<<ADSC)) ;
21 return ADC;
22 }
23
24 u in t32 t readADCMiddel (u i n t 8 t mux, u i n t 8 t middel , u i n t16 t per iode){
25
26 ADMUX = (ADMUX & 0b11100000) | mux;
27
28 u in t32 t m = 0 ;
29 u in t 8 t i ;
30 for (i = 0 ; i < middel ; i++){
31 ADCSRA |= (1<<ADSC) ;
32 while (ADCSRA & (1<<ADSC)) ;
33 m += ADC;
34 delay (per iode) ;
35 }
36
37 return (u in t32 t) (m/middel) ;
38 }

138

39
40 u in t32 t readVolt (u i n t 8 t mux){
41 u in t32 t adc = readADCMiddel (mux, 5 , 1) ;
42 u in t32 t u = ((adc *1000) /1024) * 5 ; // Covert ADC => Volt
43 return u ;
44 }

Listing A.29: Module for ADC operations (adc.c)

Listing A.30: Header for ADC operations (adc.h)

1 #ifndef ADC H
2 #define ADC H 1
3
4 #import <avr / i o . h>
5 #import <u t i l / delay . h>
6 #import ” u t i l s . h”
7
8 #define DDRADC DDRA
9

10 #define ADC 0 0
11 #define ADC 1 1
12 #define ADC 2 2
13 #define ADC 3 3
14 #define ADC 4 4
15 #define ADC 5 5
16
17
18 u in t16 t readADC(u in t 8 t mux) ;
19 u in t32 t readADCMiddel (u i n t 8 t mux, u i n t 8 t middel , u i n t16 t per iode) ;
20
21 void initADC () ;
22 u in t32 t readVolt (u i n t 8 t mux) ;
23
24
25 #endif

Listing A.30: Header for ADC operations (adc.h)

Listing A.31: Module for command interpretation (interpreter.c)

1 #include ” i n t e r p r e t e r . h”
2
3 u in t32 t args [] = {0 ,0 ,0 ,0 ,0 ,0 ,0} ;
4 u i n t 8 t ADC current [] = {ADC 3 , ADC 4 , ADC 5} ;
5 u i n t 8 t ADC deflect ion [] = {ADC 0 , ADC 1 , ADC 2} ;
6 u i n t 8 t ADC force [] = {ADC 3 , ADC 4 , ADC 5} ;
7 u i n t 8 t PWM ch [] = {PWM 0, PWM 1, PWM 2} ;
8
9 void analyzeCmd (char *cmd){

10 i f (busy != 0 && strncasecmp (”BUSY?” ,cmd , 5) == 0){
11 sendUARTprintln ((u i n t 8 t *) ” yes ”) ;
12 return ;
13 }
14
15 // IDN? − Returns i d e n t i f i c a t i o n
16 i f (strncasecmp (”IDN?” ,cmd , 4) == 0){
17 sendUARTprintln ((u i n t 8 t *) ” F l ex ino l uC demo v2 .0 ”) ;
18
19 //PWM? − Returns PWM s e t t i n g f o r s p e c i f i e d channel
20 } else i f (strncasecmp (”PWM?” ,cmd , 4) == 0){
21 i f (readArgs ((u i n t 8 t *)cmd , 1) != 0){
22 sendWrongNoOfArgs ((u i n t 8 t *) ”PWM?” , 1) ;
23 return ;
24 }
25 u in t 8 t pwm = getPwm(PWM ch[args [0]]) ;
26 sendUARTdecn(pwm, 0) ;
27
28
29
30 //PWM − Sets PWM value f o r s p e c i f i e d channel
31 } else i f (strncasecmp (”PWM” ,cmd , 3) == 0){
32 i f (readArgs ((u i n t 8 t *)cmd , 2) != 0){
33 sendWrongNoOfArgs ((u i n t 8 t *) ”PWM” , 2) ;
34 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! PWM takes 2 arguments ”) ;
35 return ;
36 }
37 setPwm(PWM ch[args [0]] , args [1]) ;
38 return ;
39
40 //CURRENT? − Returns current f o r s p e c i f i e d channel
41 } else i f (strncasecmp (”CURRENT?” ,cmd , 7) == 0){
42 i f (readArgs ((u i n t 8 t *)cmd , 1) != 0){
43 sendWrongNoOfArgs ((u i n t 8 t *) ”CURRENT?” , 1) ;
44 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! CURRENT? takes 1 argument ”) ;
45 return ;
46 }
47
48 u in t32 t u = readVolt (ADC current [args [0]]) ;
49
50 sendUARTdecn(u , 3) ;
51
52 //DEFLECTION? − Returns d e f l e c t i o n f o r s p e c i f i e d channel
53 } else i f (strncasecmp (”DEFLECTION?” ,cmd , 11) == 0){
54 i f (readArgs ((u i n t 8 t *)cmd , 1) != 0){
55 sendWrongNoOfArgs ((u i n t 8 t *) ”DEFLECTION?” , 1) ;
56 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! DEFLECTION? takes 1 argument ”) ;
57 return ;
58 }
59 u in t32 t u = readVolt (ADC deflect ion [args [0]]) ;

139

60
61 sendUARTdecn(u , 3) ;
62
63 //FORCE? − Returns f o r c e from s p e c i f i e d channel
64 } else i f (strncasecmp (”FORCE?” ,cmd , 6) == 0){
65 i f (readArgs ((u i n t 8 t *)cmd , 1) != 0){
66 sendWrongNoOfArgs ((u i n t 8 t *) ”FORCE?” , 1) ;
67 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! FORCE? takes 1 argument ”) ;
68 return ;
69 }
70 u in t32 t u = readVolt (ADC force [args [0]]) ;
71
72 sendUARTdecn(u , 3) ;
73
74 //CONT CURRENT DEFLECTION − Sta r t s cont inu ing current and d e f l e c t i o n measurement
75 } else i f (strncasecmp (”CONT CURRENT DEFLECTION” ,cmd , 23) == 0){
76 i f (readArgs ((u i n t 8 t *)cmd , 7) != 0){
77 sendWrongNoOfArgs ((u i n t 8 t *) ”CONT CURRENT DEFLECTION?” , 7) ;
78 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! CONT CURRENT DEFLECTION takes 7

arguments ”) ;
79 return ;
80 }
81 sendSuccess () ;
82 s t a r t c o n t c u r r e n t a n d d e f l e c t i o n = 1 ;
83 return ;
84
85
86 //CONT CURRENT − Sta r t s cont inu ing current measurement
87 } else i f (strncasecmp (”CONT CURRENT” ,cmd , 12) == 0){
88 i f (readArgs ((u i n t 8 t *)cmd , 4) != 0){
89 sendWrongNoOfArgs ((u i n t 8 t *) ”CONT CURRENT” , 4) ;
90 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! CONT CURRENT takes 4 arguments ”) ;
91 return ;
92 }
93 s t a r t c o n t c u r r e n t = 1 ;
94 sendSuccess () ;
95
96 //CAL CURRENT
97 } else i f (strncasecmp (”CAL CURRENT” ,cmd , 11) == 0){
98 i f (readArgs ((u i n t 8 t *)cmd , 1) != 0){
99 sendWrongNoOfArgs ((u i n t 8 t *) ”CAL CURRENT” , 1) ;

100 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! CAL CURRENT takes 1 argument ”) ;
101 return ;
102 }
103 s t a r t c a l c u r r e n t = 1 ;
104
105 //CONT DEFLECTION − Sta r t s cont inu ing d e f l e c t i o n measurement
106 } else i f (strncasecmp (”CONT DEFLECTION” ,cmd , 15) == 0){
107 i f (readArgs ((u i n t 8 t *)cmd , 4) != 0){
108 sendWrongNoOfArgs ((u i n t 8 t *) ”CONT DEFLECTION” , 4) ;
109 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! CONT DEFLECTION takes 4 arguments

”) ;
110 return ;
111 }
112 s t a r t c o n t d e f l e c t i o n = 1 ;
113 sendSuccess () ;
114
115 //CAL DEFLECTION
116 } else i f (strncasecmp (”CAL DEFLECTION” ,cmd , 14) == 0){
117 // i f (readArgs ((u i n t 8 t *)cmd , 1) != 0){
118 //sendWrongNoOfArgs ((u i n t 8 t *) ”CAL DEFLECTION” , 1) ;
119 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! CAL DEFLECTION takes 1 argument ”) ;
120 // return ;
121 //}
122 s t a r t c a l d e f l e c t i o n = 1 ;
123
124 //CONT FORCE − Sta r t s cont inu ing d e f l e c t i o n measurement
125 } else i f (strncasecmp (”CONT FORCE” ,cmd , 10) == 0){
126 i f (readArgs ((u i n t 8 t *)cmd , 4) != 0){
127 sendWrongNoOfArgs ((u i n t 8 t *) ”CONT FORCE” , 4) ;
128 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! CONT FORCE takes 4 arguments ”) ;
129 return ;
130 }
131 s t a r t c o n t f o r c e = 1 ;
132 sendSuccess () ;
133
134 //SET DEFLECTIONS
135 } else i f (strncasecmp (”SET DEFLECTIONS” ,cmd , 15) == 0){
136 i f (readArgs ((u i n t 8 t *)cmd , 6) != 0){
137 sendWrongNoOfArgs ((u i n t 8 t *) ”SET DEFLECTIONS” , 6) ;
138 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! SET DEFLECTIONS takes 6 arguments

”) ;
139 return ;
140 }
141 s t a r t s e t d e f l e c t i o n s = 1 ;
142
143
144 //SET DEFLECTION
145 } else i f (strncasecmp (”SET DEFLECTION” ,cmd , 14) == 0){
146 i f (readArgs ((u i n t 8 t *)cmd , 4) != 0){
147 sendWrongNoOfArgs ((u i n t 8 t *) ”SET DEFLECTION” , 4) ;
148 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! SET DEFLECTION takes 4 arguments ”)

;
149 return ;
150 }
151 s t a r t s e t d e f l e c t i o n = 1 ;
152
153 //SET CURRENT
154 } else i f (strncasecmp (”SET CURRENT” ,cmd , 11) == 0){
155 i f (readArgs ((u i n t 8 t *)cmd , 4) != 0){
156 sendWrongNoOfArgs ((u i n t 8 t *) ”SET CURRENT” , 4) ;
157 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! SET CURRENT takes 4 arguments ”) ;
158 return ;
159 }
160 s t a r t s e t c u r r e n t = 1 ;
161
162 //SET FORCE
163 } else i f (strncasecmp (”SET FORCE” ,cmd , 9) == 0){
164 i f (readArgs ((u i n t 8 t *)cmd , 4) != 0){
165 sendWrongNoOfArgs ((u i n t 8 t *) ”SET FORCE” , 4) ;
166 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! SET FORCE takes 4 arguments ”) ;
167 return ;
168 }

140

169 s t a r t s e t f o r c e = 1 ;
170
171
172 //FAST LOOP
173 } else i f (strncasecmp (”FAST LOOP” ,cmd , 9) == 0){
174 i f (readArgs ((u i n t 8 t *)cmd , 3) != 0){
175 sendWrongNoOfArgs ((u i n t 8 t *) ”FAST LOOP” , 3) ;
176 // sendFa i lure ((u i n t 8 t *) ”Wrong number o f arguments ! FAST LOOP takes 3 arguments ”) ;
177 return ;
178 }
179 sendSuccess () ;
180 s t a r t f a s t = 1 ;
181
182 //BUSY? − Returns busy s t a t e o f u−program
183 } else i f (strncasecmp (”BUSY?” ,cmd , 5) == 0){
184 sendUARTprintln ((u i n t 8 t *) ”no”) ;
185
186 //STOP − Stops the current operat ion
187 } else i f (strncasecmp (”STOP” ,cmd , 4) == 0){
188 stop = 1 ;
189 // sendSuccess () ;
190
191 //RESET − Resets m i c r o c on t r o l l e r
192 } else i f (strncasecmp (”RESET” ,cmd , 5) == 0){
193 wdt enable (WDTO 15MS) ;
194 while (1) ;
195
196 } else{
197 sendFa i lure ((u i n t 8 t *) ”Command not recogn ized ! ”) ;
198 }
199
200
201 }
202
203 u in t 8 t readArgs (u i n t 8 t *cmd , u i n t 8 t n){
204 u in t 8 t arg n = 0 ;
205 u in t 8 t s t a r t = 1 ;
206 while (*cmd && (*cmd != ’\n ’)){
207 i f (*cmd == ’ ’){
208 i f (s t a r t == 1) s t a r t = 0 ; else arg n++;
209 cmd++;
210 } else{
211 i f (s t a r t == 0){
212 args [arg n] = readArg (cmd) ;
213 //sendUARTdec(args [arg n] , 1) ;
214 while (*cmd && (*cmd != ’ ’) && (*cmd != ’\n ’)) cmd++;
215 } else{
216 cmd++;
217 }
218 }
219
220 }
221
222 i f (arg n+1 >= n && s t a r t ==0) return 0 ;
223 return 1 ;
224 }
225
226 u in t32 t readArg (u i n t 8 t *cmd){
227 u in t32 t v = 0 ;
228 u in t 8 t zero = ’ 0 ’ ;
229 while (*cmd && (*cmd != ’\n ’)){
230 i f (*cmd == ’ ’) return v ;
231 v *= 10;
232 v += (*cmd − zero) ;
233 cmd++;
234 }
235
236 return v ;
237 }
238
239 void sendSuccess () {
240 sendUARTprintln ((u i n t 8 t *) ”OK! ”) ;
241 }
242
243 void sendFa i lure (u i n t 8 t *message){
244 sendUARTprint ((u i n t 8 t *) ”ERR! ”) ;
245 sendUARTprintln (message) ;
246 }
247
248 void sendWrongNoOfArgs (u i n t 8 t *cmd , u i n t 8 t noOfArgs){
249 sendUARTprint ((u i n t 8 t *) ” Error : ”) ;
250 sendUARTprint ((u i n t 8 t *) ”Wrong number o f arguments ! ”) ;
251 sendUARTprint (cmd) ;
252 sendUARTprint ((u i n t 8 t *) ” takes exac t ly ”) ;
253 sendUARTint (noOfArgs) ;
254 i f (noOfArgs == 1){
255 sendUARTprintln ((u i n t 8 t *) ” argument”) ;
256 } else{
257 sendUARTprintln ((u i n t 8 t *) ” arguments”) ;
258 }
259 }

Listing A.31: Module for command interpretation (interpreter.c)

Listing A.32: Header for command interpretation (interpreter.h)

1 #ifndef INTERPRETER H
2 #define INTERPRETER H 1
3
4 #include <s t r i n g . h>
5 #include <avr /wdt . h>
6 #include ” uart . h”
7 #include ”main . h”
8 #include ”adc . h”
9

10 void analyzeCmd (char *cmd) ;
11 u in t 8 t readArgs (u i n t 8 t *cmd , u i n t 8 t n) ;

141

12 u in t32 t readArg (u i n t 8 t *cmd) ;
13
14 void sendSuccess () ;
15 void sendFa i lure (u i n t 8 t *message) ;
16 void sendWrongNoOfArgs (u i n t 8 t *cmd , u i n t 8 t noOfArgs) ;
17
18 extern u in t32 t args [] ;
19 extern u in t 8 t ADC current [] ;
20 extern u in t 8 t ADC deflect ion [] ;
21 extern u in t 8 t ADC force [] ;
22 extern u in t 8 t PWM ch [] ;
23 #endif

Listing A.32: Header for command interpretation (interpreter.h)

Listing A.33: Module for PWM operations (pwm.c)

1 #include ”pwm. h”
2
3 void initPwm () {
4 DDRPWM1 |= (1<<OC0) ;
5 DDRPWM2 |= (1<<OC1A) |(1<<OC1B) ;
6
7
8 //Timer/ counter 0 (8 b i t)
9 // Fast PWM, inve r t i n g mode (f o r å f å ’ ren ’ 0) , p r e s c a l i n g 256 (225Hz)

10 TCCR0 = (1<<WGM01) |(1<<WGM00) |(1<<COM01) |(1<<COM00) |(0<<CS02) |(1<<CS01) |(1<<CS00) ;
11 OCR0 = 255;
12
13 //Timer/ counter 1 (16 b i t)
14 // Fast PWM 8 bit , i nv e r t i n g mode (f o r å f å ’ ren ’ 0) , p r e s c a l i n g 256 (225Hz)
15 TCCR1A = (1<<COM1A1) |(1<<COM1A0) |(1<<COM1B1) |(1<<COM1B0) |(0<<FOC1A) |(0<<FOC1B) |(0<<WGM11) |(1<<WGM10) ;
16 TCCR1B = (0<<ICNC1) |(0<<ICES1) |(0<<WGM13) |(1<<WGM12) |(0<<CS12) |(1<<CS11) |(1<<CS10) ;
17
18 OCR1A = 255;
19 OCR1B = 255;
20
21 }
22
23 void setPwm(u in t 8 t channel , u i n t 8 t value){
24 switch (channel){
25 case PWM 0: OCR0 = 255−value ; break ;
26 case PWM 1: OCR1A = 255−value ; break ;
27 case PWM 2: OCR1B = 255−value ; break ;
28 }
29 }
30
31 u in t 8 t getPwm(u in t 8 t channel){
32 switch (channel){
33 case PWM 0: return 255−(u i n t 8 t)OCR0;
34 case PWM 1: return 255−(u i n t 8 t)OCR1A;
35 case PWM 2: return 255−(u i n t 8 t)OCR1B;
36 }
37 return 0 ;
38 }

Listing A.33: Module for PWM operations (pwm.c)

Listing A.34: Header for PWM operations (pwm.h)

1 #ifndef PWM H
2 #define PWM H 1
3
4 #import <avr / i o . h>
5
6 #define DDRPWM1 DDRB
7 #define DDRPWM2 DDRD
8
9 #define OC0 PINB3

10 #define OC1A PIND5
11 #define OC1B PIND4
12
13 #define PWM 0 0
14 #define PWM 1 1
15 #define PWM 2 2
16
17 void initPwm () ;
18 void setPwm(u in t 8 t channel , u i n t 8 t value) ;
19 u i n t 8 t getPwm(u in t 8 t channel) ;
20
21 #endif

Listing A.34: Header for PWM operations (pwm.h)

Listing A.35: Module for Timer/Counter operations (timer.c)

1 #include ” timer . h”
2
3 u in t 8 t timCnt = 0 ;
4
5 void in i tTimer () {
6 //Timer 2 , CTC−mode (TOP=OCR2) , p r e s c a l e r 1024
7 TCCR2 = (1<<WGM21) |(0<<WGM20) |(1<<CS22) |(1<<CS21) |(1<<CS20) ;
8

142

9 OCR2 = 239;
10
11 TIMSK |= (1<<OCIE2) ;
12 }
13
14
15 ISR(SIG OUTPUT COMPARE2)
16 {
17 timCnt = (timCnt+1) % 6 ;
18 // timCnt == 0 => 10ms
19 i f (timCnt == 0) PORTB ˆ= 0x01 ;
20 return ;
21 }

Listing A.35: Module for Timer/Counter operations (timer.c)

Listing A.36: Header for Timer/Counter operations (timer.h)

1 #ifndef TIMER H
2 #define TIMER H 1
3
4 #import <avr / i o . h>
5 #import <avr / i n t e r rup t . h>
6
7 void in i tTimer () ;
8
9 #endif

Listing A.36: Header for Timer/Counter operations (timer.h)

Listing A.37: Module for UART operations (uart.c)

1 #include ” uart . h”
2
3 char rx buf [r x b u f s i z e] ; // Rx−bu f f e r
4 u i n t 8 t r x t a i l = 0 ; // Rx−bu f f e r index
5
6
7 void initUART () {
8
9 UART DDR |= (1<<UART TX) ;

10 UART DDR &= ˜(1<<UART RX) ;
11
12 UBRRH = (u in t 8 t) (MY UBRR >> 8) ;
13 UBRRL = (u in t 8 t)MY UBRR;
14 UCSRB = (1<<RXEN) |(1<<TXEN) |(1<<RXCIE) ;
15 UCSRC = (1<<URSEL) |(3<<UCSZ0) ;
16 }
17
18 void sendUART(u in t 8 t c){
19 while (! (UCSRA & (1<<UDRE))) ;
20 UDR = c ;
21 }
22
23 void sendUARTprintln (u i n t 8 t * s){
24 sendUARTprint (s) ;
25 sendUARTnewline () ;
26 }
27
28
29 void sendUARTprint (u i n t 8 t * s){
30 while (* s){
31 sendUART(* s) ;
32 s++;
33 }
34 }
35
36 /*
37 void sendUARTbyte (u i n t 8 t b){
38 u in t 8 t i = 1 ;
39 f o r (i = 0 ; i < 8 ; i++){
40 i f ((b & i) == 0){
41 sendUART(’ 0 ’) ;
42 } e l s e {
43 sendUART(’ 1 ’) ;
44 }
45 }
46 }
47 */
48
49 void sendUARTint (u in t32 t n){
50 char s [1 0] ;
51 u i n t 8 t i = 0 ;
52 while (n > 0){
53 s [i ++] = ’ 0 ’ + (n % 10) ;
54 n /= 10 ;
55 }
56
57 i f (i ==0){
58 sendUART(’ 0 ’) ;
59 } else{
60 for (u i n t 8 t j = i ; j > 0 ; j−−){
61 sendUART(s [j −1]) ;
62 }
63 }
64 }
65
66 void sendUARTdec(u in t32 t n , u i n t 8 t dec){
67 char s [1 0] ;
68 u i n t 8 t i = 0 ;

143

69 while (n > 0){
70 s [i ++] = ’ 0 ’ + (n % 10) ;
71 n /= 10 ;
72 }
73
74 i f (i ==0){
75 sendUART(’ 0 ’) ;
76 } else i f (i > 0 && dec >= i){
77 sendUARTprint ((u i n t 8 t *) ” 0 . ”) ;
78 for (u i n t 8 t j = dec ; j > 0 ; j−−){
79 i f (j > i){
80 sendUART(’ 0 ’) ;
81 } else{
82 sendUART(s [j −1]) ;
83 }
84 }
85 } else{
86 for (u i n t 8 t j = i ; j > 0 ; j−−){
87 i f (j == dec) sendUART(’ . ’) ;
88 sendUART(s [j −1]) ;
89 }
90 }
91 }
92
93 void sendUARTdecn(u in t32 t n , u i n t 8 t dec){
94 sendUARTdec(n , dec) ;
95 sendUARTnewline () ;
96 }
97
98 void sendUARTnewline () {
99 sendUARTprint ((u i n t 8 t *) newl ine) ;

100 }
101
102 char readUART() {
103 while (! (UCSRA & (1<<RXC))) ;
104
105 return UDR;
106 }
107
108
109 ISR(SIG UART RECV)
110 {
111 char data = UDR;
112
113 i f (r x t a i l == rx bu f s i z e −1){
114 // Buf fe r f u l l
115 r x t a i l = 0 ;
116 sendUARTprintln ((u i n t 8 t *) ” Buf fe r f u l l ! Wait f o r ’OK’ be fo r e sending a new command”) ;
117 } else{
118 rx buf [r x t a i l ++] = data ;
119 i f (data==’\n ’){
120 analyzeCmd (rx buf) ;
121 r x t a i l = 0 ;
122 }
123 }
124
125 return ;
126 }

Listing A.37: Module for UART operations (uart.c)

Listing A.38: Header for UART operations (uart.h)

1 #ifndef UART H
2 #define UART H 1
3
4 #import <avr / i o . h>
5 #import <u t i l / delay . h>
6 #import <avr / i n t e r rup t . h>
7 #include <avr /eeprom . h>
8 #include ” i n t e r p r e t e r . h”
9

10 #define CLOCK F CPU
11 #define BAUD 57600
12 #define MY UBRR ((CLOCK) /((BAUD) *16L)−1)
13
14 #define UART DDR DDRD
15 #define UART TX PD1
16 #define UART RX PD0
17
18 #define newl ine ”\n”
19
20 void initUART () ;
21 void sendUART(u in t 8 t c) ;
22 void sendUARTprintln (u i n t 8 t * s) ;
23 void sendUARTprint (u i n t 8 t * s) ;
24 void sendUARTbyte (u i n t 8 t b) ;
25 void sendUARTint (u in t32 t n) ;
26 void sendUARTdec(u in t32 t n , u i n t 8 t dec) ;
27 void sendUARTdecn(u in t32 t n , u i n t 8 t dec) ;
28 void sendUARTnewline () ;
29 char readUART() ;
30
31
32 #define r x b u f s i z e 50
33
34 #endif

Listing A.38: Header for UART operations (uart.h)

Listing A.39: Utilities module (utils.c)

144

1 #include ” u t i l s . h”
2
3 void delay (u in t16 t ms){
4 i f (ms == 0) return ;
5 while (ms > 16){
6 delay ms (16) ;
7 ms −= 16;
8 }
9

10 delay ms (ms) ;
11 }

Listing A.39: Utilities module (utils.c)

Listing A.40: Header for utilities module (utils.h)

1 #ifndef UTILS H
2 #define UTILS H 1
3
4 #import <u t i l / delay . h>
5
6 void delay (u in t16 t ms) ;
7
8
9 #endif

Listing A.40: Header for utilities module (utils.h)

A.5 Computer Interface Program

The below code is the implementation of the program described in section 4.5.5.

Listing A.41: Program Loader (Program.cs)

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Linq ;
4 using System . Windows . Forms ;
5
6 namespace uC Flex ino l {
7 stat ic c lass Program {
8 /// <summary>
9 /// The main entry point f o r the app l i c a t i on .

10 /// </summary>
11 [STAThread]
12 stat ic void Main () {
13 Appl i cat ion . Enab leVi sua lSty l e s () ;
14 Appl i cat ion . SetCompatibleTextRenderingDefault (f a l s e) ;
15 Appl i cat ion . Run(new main ()) ;
16 }
17 }
18 }

Listing A.41: Program Loader (Program.cs)

Listing A.42: Main program (main.cs)

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . ComponentModel ;
4 using System . Data ;
5 using System . Drawing ;
6 using System . Linq ;
7 using System . Text ;
8 using System . Windows . Forms ;
9 using System . Diagnos t i c s ;

10 using System . IO . Ports ;
11 using System . G loba l i z a t i on ;
12 using System . IO ;
13
14 namespace uC Flex ino l {
15 public p a r t i a l c lass main : Form {
16
17 private struct f lexinolCmd {
18 public string cmd ;
19 public string [] a rgs ;
20 public string [] std ;
21 public string [] va lues ;
22
23 public override string ToString () {
24 string r e t = cmd ;
25 for (int i = 0 ; i < va lues . Length ; i++) {
26 r e t += ” ” + values [i] ;
27 }
28 return r e t ;
29 }
30
31 }

145

32
33 private List<f lexinolCmd> cmdList ;
34 private List<f lexinolCmd> cmdCont ;
35
36 private TextBox [] txtArgs ;
37 private Label [] l b lArgs ;
38 private TextBox [] txtCArgs ;
39 private Label [] lblCArgs ;
40
41 private uC comm uC;
42 private r t f b u i l d e r rt f cmd ;
43 private r t f b u i l d e r r t f a s c ;
44
45 private OyvindLib . ngraph graph ;
46
47 private f lexinolCmd cmdStop ;
48 private DateTime contStar t ;
49
50 private StreamWriter contLog = null ;
51
52 public main () {
53 In i t ia l i zeComponent () ;
54
55 txtArgs = new TextBox [] { txtArg1 , txtArg2 , txtArg3 , txtArg4 , txtArg5 , txtArg6 , txtArg7 } ;
56 lb lArgs = new Label [] { lblArg1 , lblArg2 , lblArg3 , lblArg4 , lblArg5 , lblArg6 , lb lArg7 } ;
57
58 txtCArgs = new TextBox [] { txtCArg0 , txtCArg1 , txtCArg2 , txtCArg3 , txtCArg4 , txtCArg5 , txtCArg6 } ;
59 lblCArgs = new Label [] { lblCArg0 , lblCArg1 , lblCArg2 , lblCArg3 , lblCArg4 , lblCArg5 , lblCArg6 } ;
60
61 addHandlers () ;
62
63 this . V i s i b l e = true ;
64 this . WindowState = FormWindowState . Normal ;
65
66
67 FolderBrowserDialog fb = new FolderBrowserDialog () ;
68 // fb . RootFolder = Environment . Spec i a lFo lde r . MyComputer ;
69 fb . Se lectedPath = Appl i cat ion . StartupPath + ”\\cmd\\ f inger demo ” ;
70 fb . Desc r ip t i on = ”Choose setup f o l d e r ” ;
71 fb . ShowNewFolderButton = f a l s e ;
72
73 fb . ShowDialog () ;
74 string l i s tPa th = fb . Se lectedPath ;
75
76 // populateCmdList (” r e gu l a t o r ”) ;
77 // populateCmdList (” f inger demo ”) ;
78
79 try {
80 populateCmdList (l i s tPa th) ;
81 } catch (Exception) {
82 System . Windows . Forms . MessageBox . Show(” Inva l i d path f o r command f i l e s ! ” , ” Error ” ,

MessageBoxButtons .OK, MessageBoxIcon . Error) ;
83 Environment . Exit (0) ;
84 }
85
86 try {
87 uC = new uC comm(new Se r i a lPo r t ()) ;
88 } catch (Exception e) {
89 System . Windows . Forms . MessageBox . Show(e . Message , ” Error ” , MessageBoxButtons .OK, MessageBoxIcon .

Error) ;
90 Environment . Exit (0) ;
91 }
92
93 //txtCmdOutput . Rtf += r t fC o l o r s + ” t e s t e r ” ;
94 //txtASCOutput . Rtf += r t f C o l o r s ;
95 string header = ”\\ r t f 1 \\ ans i \\ de f f 0 {\\ c o l o r t b l ;\\ red0\\green0\\blue255 ;\\ red255\\green0\\blue0 ;} ” ;
96 rt f cmd = new r t f b u i l d e r (header) ;
97 txtCmdOutput . Rtf = rt f cmd . ToString () ;
98
99 r t f a s c = new r t f b u i l d e r (header) ;

100 txtASCOutput . Rtf = r t f a s c . ToString () ;
101
102 cmdStop = createCmd (”STOP” , new string [0] , new string [0]) ;
103
104 graph = new OyvindLib . ngraph (new Str ing [] { ”0” , ”1” , ”2” , ”3” , ”4” , ”5” } , ”Continuous reading ” ,

10) ;
105 graph . Dock = DockStyle . F i l l ;
106 panPlot . Contro ls .Add(graph) ;
107
108 txtX LostFocus (null , null) ;
109 }
110
111 void cmd KeyDown(object sender , KeyEventArgs e) {
112
113 i f (e . KeyCode == Keys . Return) doSend () ;
114 }
115
116 void populateCmdList (string f o l d e r) {
117 cmdList = new List<f lexinolCmd >() ;
118
119 setup cmdSetup = new setup (f o l d e r + ”\\ setup . txt ”) ;
120
121 int i = 0 ;
122 try {
123 while (true) {
124 string [] cmd = cmdSetup . g e tS t r ing (i . ToString ()) . S p l i t (’\ t ’) ;
125 string name = cmd [0] ;
126 string [] a rgs = new string [int . Parse (cmd [1])] ;
127 string [] std = new string [int . Parse (cmd [1])] ;
128
129 for (int j = 0 ; j < args . Length ; j++) {
130 args [j] = cmd [j + 2] ;
131 std [j] = cmd [j + 2 + args . Length] ;
132 }
133
134 cmdList .Add(createCmd (name , args , std)) ;
135 i ++;
136 }
137 } catch (Exception) { }
138
139 lstCommand . DataSource = cmdList ;
140
141 setup cmdSetupCont = new setup (f o l d e r + ”\\ cont . txt ”) ;

146

142 string [] nr = cmdSetupCont . g e tS t r ing (”nr”) . S p l i t (’ , ’) ;
143 cmdCont = new List<f lexinolCmd >() ;
144 for (i = 0 ; i < nr . Length ; i++) {
145 cmdCont .Add(cmdList [int . Parse (nr [i])]) ;
146 }
147
148 lstCmdCont . DataSource = cmdCont ;
149 }
150
151 f lexinolCmd createCmd (string cmd , string [] args , string [] std) {
152 f lexinolCmd re t = new f lexinolCmd () ;
153 r e t . cmd = cmd ;
154 r e t . args = args ;
155 r e t . std = std ;
156 r e t . va lues = new string [a rgs . Length] ;
157
158 return r e t ;
159 }
160
161 void addHandlers () {
162 lstCommand . SelectedIndexChanged += new EventHandler (cmbCommand SelectedIndexChanged) ;
163 for (int i = 0 ; i < txtArgs . Length ; i++) {
164 txtArgs [i] . KeyDown += new KeyEventHandler (cmd KeyDown) ;
165 }
166 lstCommand . KeyDown += new KeyEventHandler (cmd KeyDown) ;
167
168 txtX . LostFocus += new EventHandler (txtX LostFocus) ;
169 }
170
171 void txtX LostFocus (object sender , EventArgs e) {
172 double x = 0 ;
173 double . TryParse (txtX . Text , out x) ;
174 txtX . Text = x . ToString () ;
175 graph . setXLength (x) ;
176 }
177
178 void cmbCommand SelectedIndexChanged (object sender , EventArgs e) {
179 f lexinolCmd cmd = (flexinolCmd) lstCommand . Se lectedItem ;
180 for (int i = 0 ; i < txtArgs . Length ; i++) {
181 i f (i < cmd . args . Length) {
182 txtArgs [i] . V i s i b l e = true ;
183 txtArgs [i] . Text = cmd . std [i] ;
184 lb lArgs [i] . Text = cmd . args [i] ;
185 } else {
186 txtArgs [i] . V i s i b l e = f a l s e ;
187 txtArgs [i] . Text = ”” ;
188 lb lArgs [i] . Text = ”” ;
189 }
190 }
191 }
192
193 private void btnSend Click (object sender , EventArgs e) {
194 doSend () ;
195
196 }
197
198 private void doSend () {
199 timASCRead . Stop () ;
200 timCont . Stop () ;
201 f lexinolCmd cmd = (flexinolCmd) lstCommand . Se lectedItem ;
202 sendCmd(cmd , timCmdRead , txtArgs , rt f cmd) ;
203 }
204
205 private void sendCmd(f lexinolCmd cmd , Timer tim , TextBox [] txt , r t f b u i l d e r r t f) {
206 for (int i = 0 ; i < cmd . args . Length ; i++) {
207 cmd . va lues [i] = txt [i] . Text ;
208 }
209
210 string data = cmd . ToString () ;
211 uC. send (data) ;
212 i f (r t f != null) {
213 r t f . appendFirst (”\\b>\\c f 2 ” + data + ”\\ c f 0 \\b0\\ l i n e ”) ;
214 txtCmdOutput . Rtf = r t f . ToString () ;
215 }
216 i f (! tim . Enabled) tim . Star t () ;
217 }
218
219
220 private void btnASCSend Click (object sender , EventArgs e) {
221 timCmdRead . Stop () ;
222 timCont . Stop () ;
223 uC. send (txtASCInput . Text) ;
224 r t f a s c . appendFirst (”\\b>\\c f 2 ” + txtASCInput . Text + ”\\ c f 0 \\b0\\ l i n e ”) ;
225 txtASCOutput . Rtf = r t f a s c . ToString () ;
226 i f (! timASCRead . Enabled) timASCRead . Star t () ;
227 }
228
229 private void timASCRead Tick (object sender , EventArgs e) {
230 string data = ”” ;
231 try {
232
233 data = uC. read (1) ;
234 r t f a s c . appendFirst (”\\b>\\c f1 ” + data + ”\\ c f0 \\b0\\ l i n e ”) ;
235 txtASCOutput . Rtf = r t f a s c . ToString () ;
236 } catch (Exception) {}
237
238 }
239
240 private void timCmdRead Tick (object sender , EventArgs e) {
241 string data = ”” ;
242 try {
243 data = uC. read (1) ;
244 rt f cmd . appendFirst (”\\b>\\c f1 ” + data + ”\\ c f0 \\b0\\ l i n e ”) ;
245 txtCmdOutput . Rtf = rt f cmd . ToString () ;
246 } catch (Exception) { }
247
248 }
249
250
251 private void btnClear Cl i ck (object sender , EventArgs e) {
252 rt f cmd . c l e a r () ;
253 txtCmdOutput . Text = ”” ;
254 }

147

255
256 private void btnStop Cl ick (object sender , EventArgs e) {
257 sendCmd(cmdStop , timCmdRead , txtArgs , rt f cmd) ;
258 }
259
260 private void lstCmdCont SelectedIndexChanged (object sender , EventArgs e) {
261 f lexinolCmd cmd = (flexinolCmd) lstCmdCont . Se lectedItem ;
262 for (int i = 0 ; i < txtArgs . Length ; i++) {
263 i f (i < cmd . args . Length) {
264 txtCArgs [i] . V i s i b l e = true ;
265 txtCArgs [i] . Text = cmd . std [i] ;
266 lblCArgs [i] . Text = cmd . args [i] ;
267 } else {
268 txtCArgs [i] . V i s i b l e = f a l s e ;
269 txtCArgs [i] . Text = ”” ;
270 lblCArgs [i] . Text = ”” ;
271 }
272 }
273 }
274
275 private void btnStartCont Cl ick (object sender , EventArgs e) {
276 graph . removeValues () ;
277 contStar t = DateTime .Now;
278
279 timASCRead . Stop () ;
280 timCmdRead . Stop () ;
281
282 i f (chkSave . Checked) {
283 i f (contLog != null) contLog . Close () ;
284 contLog = new StreamWriter (Appl i cat ion . StartupPath + ”\\data\\” + DateTime .Now. ToString (”yyyy .

MM. dd”) + ” . txt ” , true) ;
285 } else {
286 contLog = null ;
287 }
288 f lexinolCmd cmd = (flexinolCmd) lstCmdCont . Se lectedItem ;
289 sendCmd(cmd , timCont , txtCArgs , null) ;
290
291 }
292
293 private void timCont Tick (object sender , EventArgs e) {
294 string [] data = null ;
295 double [] dvalues = null ;
296 Cul ture In fo cu l tu r e = Culture In fo . Crea t eSpec i f i cCu l tu r e (”en−US”) ;
297 try {
298 string tmp = uC. read (1) ;
299
300 data = tmp . S p l i t (’ ’) ;
301 i f (data . Length < 2) return ;
302 dvalues = new double [data . Length−1];
303 for (int i = 0 ; i < dvalues . Length ; i++) {
304 double . TryParse (data [i] , NumberStyles . Any , cu l tu r e . NumberFormat , out dvalues [i]) ;
305 }
306 } catch (Exception) { }
307
308 i f (dvalues != null) {
309 graph . addValues (dvalues , DateTime .Now. Subtract (contStar t) . TotalSeconds) ;
310
311 i f (contLog != null) {
312 contLog . Write (DateTime .Now. Subtract (contStar t) . TotalSeconds . ToString (” 0 .00 ”) + ”\ t ”) ;
313 for (int i = 0 ; i < dvalues . Length ; i++) {
314 contLog . Write (dvalues [i] . ToString () + ”\ t ”) ;
315 }
316 contLog . Write (”\n”) ;
317 }
318 }
319
320
321 }
322
323 private void btnStopCnt Click (object sender , EventArgs e) {
324 sendCmd(cmdStop , timCont , txtCArgs , null) ;
325 }
326
327
328 }
329 }

Listing A.42: Main program (main.cs)

Listing A.43: Wrapper class for NPlot plotting library (ngraph.cs)

1 using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Text ;
4 using System . Drawing ;
5 using System . Windows . Forms ;
6 using System . Diagnos t i c s ;
7 using NPlot ;
8
9 namespace OyvindLib {

10 c lass ngraph : Panel{
11 public NPlot . Windows . PlotSurface2D xygraph = new NPlot . Windows . PlotSurface2D () ;
12 private LinePlot [] p l o t s ;
13 List<double> xvalues ;
14 List<double > [] yva lues ;
15
16 private string t i t l e ;
17 private double xlength = 20 ;
18
19 public Color [] l i n e c o l o r s = {
20 Color . Red ,
21 Color . Blue ,
22 Color . Lime ,
23 Color . Black ,
24 Color . Purple ,
25 Color . Yellow ,
26 Color . Cyan ,

148

27 Color . Gray ,
28 Color . Brown
29 } ;
30
31 public void setXLength (double l ength) {
32 xlength = length ;
33 }
34
35 public ngraph (string [] names , string t i t l e , double xlength) {
36 Contro ls .Add(xygraph) ;
37 this . t i t l e = t i t l e ;
38 this . x length = xlength ;
39 xygraph . Location = new Point (0 , 0) ;
40 xygraph . S i z e = this . S i z e ;
41 xygraph . Dock = DockStyle . F i l l ;
42 //xygraph . Res ize += new EventHandler (xygraph Res ize) ;
43 initGraph (names) ;
44 }
45
46 void xygraph Res ize (object sender , EventArgs e) {
47 //xygraph . S i z e = t h i s . S i z e ;
48 }
49
50
51 private void in itGraph (string [] names){
52 int p lo tcnt = names . Length ;
53 xygraph . Clear () ;
54
55 Font myFont = new Font (” Ar ia l ” , 8 , FontStyle . Bold) ;
56
57 //Add a background gr id f o r be t t e r chart r e a d a b i l i t y .
58 Grid gr id = new Grid () ;
59 gr id . Vert icalGridType = Grid . GridType . Coarse ;
60 gr id . HorizontalGridType = Grid . GridType . Coarse ;
61 gr id . MajorGridPen = new Pen(Color . LightGray , 1 .0 f) ;
62 xygraph .Add(gr id) ;
63
64 xygraph . T i t l e = t i t l e ;
65 xygraph . T i t l eCo lo r = Color . Red ;
66 xygraph . Capture = f a l s e ;
67 xygraph . CausesVal idat ion = f a l s e ;
68
69 xvalues = new List<double>() ;
70 yvalues = new List<double>[p l o t cnt] ;
71 p l o t s = new LinePlot [p l o t cnt] ;
72
73 for (int i = 0 ; i < p lo tcnt ; i++) {
74 yvalues [i] = new List<double>() ;
75 p l o t s [i] = new LinePlot () ;
76 p l o t s [i] . Color = l i n e c o l o r s [i % l i n e c o l o r s . GetUpperBound (0)] ;
77 p l o t s [i] . AbscissaData = xvalues ;
78 p l o t s [i] . DataSource = yvalues [i] ;
79 p l o t s [i] . Label = names [i] ;
80 p l o t s [i] . Pen = new Pen(p l o t s [i] . Color , 2) ;
81 xygraph .Add(p l o t s [i]) ;
82 }
83
84 // Balance p lo t gene ra l s e t t i n g s .
85 xygraph . ShowCoordinates = true ;
86 xygraph . YAxis1 . Label = ” Voltage [V] ” ;
87 xygraph . YAxis1 . Labe lOf f se tAbso lute = true ;
88 xygraph . YAxis1 . Labe lOf f s e t = 30 ;
89 xygraph . YAxis1 . WorldMin = −0.1;
90 xygraph . YAxis1 . WorldMax = 5 . 1 ;
91
92 xygraph . XAxis1 . Label = ”Time [s] ” ;
93 xygraph . Padding = 15 ;
94
95 // Refresh su r f a c e s .
96 xygraph . Refresh () ;
97
98 Legend legend = new Legend () ;
99 legend . AttachTo (PlotSurface2D . XAxisPosit ion . Top , PlotSurface2D . YAxisPosit ion . Le f t) ;

100 legend . VerticalEdgePlacement = Legend . Placement . I n s i d e ;
101 legend . HorizontalEdgePlacement = Legend . Placement . I n s i d e ;
102 legend . BorderStyle = LegendBase . BorderType . Line ;
103 legend . XOffset = 10 ;
104 legend . YOffset = 10 ;
105 legend . Font = myFont ;
106 xygraph . LegendZOrder = 1 ;
107 xygraph . Legend = legend ;
108
109 }
110
111 public void addValues (double [] values , double d) {
112
113 // double min = values [0] ;
114 // double max = values [0] ;
115
116 while (xva lues . Count > 0) {
117 //Debug . WriteLine (d − xvalues [0]) ;
118 i f (d−xvalues [0] > xlength) {
119 xvalues . RemoveAt (0) ;
120 for (int j = 0 ; j < yvalues . Length ; j++) {
121 yvalues [j] . RemoveAt (0) ;
122 }
123 } else break ;
124 }
125
126 for (int i = 0 ; i < yvalues . Length ; i++) {
127 xygraph . Remove(p l o t s [i] , true) ;
128 }
129
130 xvalues .Add(d) ;
131 for (int i = 0 ; i < yvalues . Length ; i++) {
132 i f (i < va lues . Length) {
133 yvalues [i] . Add(va lues [i]) ;
134 xygraph .Add(p l o t s [i]) ;
135 } else {
136 yvalues [i] . Add (0 . 0) ;
137 }
138
139 //min = Math . Min(min , findMin (yvalues [i])) ;

149

140 //max = Math .Max(max , findMax (yvalues [i])) ;
141 }
142
143 //xygraph . YAxis1 . WorldMin = min ;
144 //xygraph . YAxis1 . WorldMax = max ;
145
146 doRefresh () ;
147 }
148
149 public void removeValues () {
150 xvalues = new List<double>() ;
151
152 for (int i = 0 ; i < yvalues . Length ; i++) {
153 yvalues [i] = new List<double>() ;
154 p l o t s [i] . AbscissaData = xvalues ;
155 p l o t s [i] . DataSource = yvalues [i] ;
156 }
157 }
158
159 private double f indMin (List<double> v){
160 double min = v [0] ;
161 for (int i = 1 ; i < v . Count ; i++) {
162 min = Math . Min(min , v [i]) ;
163 }
164
165 return min ;
166 }
167 private double findMax (List<double> v) {
168 double max = v [0] ;
169 for (int i = 1 ; i < v . Count ; i++) {
170 max = Math .Max(max , v [i]) ;
171 }
172
173 return max ;
174 }
175
176 delegate void doRefreshCal lback () ;
177 private void doRefresh () {
178 i f (xygraph . InvokeRequired) {
179 doRefreshCal lback d = new doRefreshCal lback (doRefresh) ;
180 xygraph . Invoke (d) ;
181 }
182 else {
183 xygraph . Refresh () ;
184 }
185
186 }
187
188 }
189 }

Listing A.43: Wrapper class for NPlot plotting library (ngraph.cs)

Listing A.44: Rich Text Format (rtf) builder class (rtf builder.cs)

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Linq ;
4 using System . Text ;
5
6 namespace uC Flex ino l {
7 c lass r t f b u i l d e r {
8
9 List<string> r t f t e x t ;

10 string header ;
11 public r t f b u i l d e r (string header) {
12 r t f t e x t = new List<string >() ;
13 this . header = header ;
14 }
15
16 public void append (string r t f) {
17 r t f t e x t .Add(r t f) ;
18 }
19
20 public void c l e a r () {
21 r t f t e x t . Clear () ;
22 }
23
24 public void appendFirst (string r t f) {
25 r t f t e x t . I n s e r t (0 , r t f) ;
26 }
27
28 public override string ToString () {
29 string r e t = ”{” + header ;
30
31 for (int i = 0 ; i < r t f t e x t . Count ; i++) {
32 r e t += r t f t e x t [i] ;
33 }
34
35 r e t += ”}” ;
36 return r e t ;
37 }
38
39 }
40 }

Listing A.44: Rich Text Format (rtf) builder class (rtf builder.cs)

Listing A.45: Class for reading setup files (setup.cs)

150

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Text ;
4 using System . IO ;
5 using System . Diagnos t i c s ;
6
7 namespace uC Flex ino l {
8 public c lass setup {
9

10 private System . Co l l e c t i on s . Hashtable va lues ;
11 private string f i l ename ;
12
13 public setup (string f i l ename) {
14 this . f i l ename = f i l ename ;
15 r eadF i l e () ;
16 }
17
18 public void r eadF i l e () {
19 Fi leStream f s = F i l e . OpenRead(this . f i l ename) ;
20 StreamReader s r = new StreamReader (f s) ;
21
22 va lues = new System . Co l l e c t i o n s . Hashtable () ;
23
24 string tmp , name , va lue ;
25 int i nd ;
26 while (! s r . EndOfStream) {
27 tmp = sr . ReadLine () ;
28 try {
29 ind = tmp . IndexOf (”]=”) ;
30 name = tmp . Substr ing (1 , ind − 1) ;
31 va lue = tmp . Substr ing (ind + 2) ;
32 va lues .Add(name , va lue) ;
33 } catch (Exception e) {
34 Debug . WriteLine (” Error in setup f i l e . Exception d e t a i l s : ” + e . Message) ;
35 }
36 }
37
38 s r . Close () ;
39 f s . Close () ;
40 }
41
42 public string ge tS t r ing (string name){
43 return (string) va lues [name] ;
44 }
45
46 public int ge t In t eg e r (string name) {
47 return int . Parse (ge tS t r ing (name)) ;
48 }
49
50 public double getDouble (string name) {
51 return double . Parse (ge tS t r ing (name)) ;
52 }
53 }
54 }

Listing A.45: Class for reading setup files (setup.cs)

Listing A.46: Class for communication with microcontroller (uC comm.cs)

1 ı̈�¿using System ;
2 using System . Co l l e c t i on s . Generic ;
3 using System . Linq ;
4 using System . Text ;
5 using System . IO ;
6 using System . IO . Ports ;
7 using System . Diagnos t i c s ;
8
9 namespace uC Flex ino l {

10 c lass uC comm {
11
12 private Se r i a lPo r t rs232 ;
13
14 public uC comm(Se r i a lPo r t rs232) {
15 this . r s232 = rs232 ;
16
17 rs232 . BaudRate = 57600;
18 rs232 . StopBits = System . IO . Ports . StopBits . One ;
19 rs232 . Par i ty = System . IO . Ports . Par i ty . None ;
20 rs232 . DataBits = 8 ;
21 rs232 . NewLine = ”\n” ;
22
23 string [] portnames = Se r i a lPo r t . GetPortNames () ;
24 bool h i t = f a l s e ;
25 for (int i = 0 ; i < portnames . Length ; i++) {
26
27 rs232 . PortName = portnames [i] ;
28 try {
29 rs232 . Open () ;
30 string id = query (”IDN?”) ;
31 i f (id . StartsWith (” F l ex ino l uC”)) {
32 Debug . WriteLine (id) ;
33 h i t = true ;
34 break ;
35 }
36 } catch (Exception) {}
37 i f (rs232 . IsOpen) rs232 . Close () ;
38 }
39
40 i f (! h i t) throw new Exception (” Mi c r o con t r o l l e r not found ! Check connect ion ”) ;
41 }
42
43 public void send (string data) {
44 rs232 . WriteLine (data) ;
45 }
46
47 public string read () {
48 return read (1000) ;

151

49 }
50
51 public string read (int timeout) {
52 rs232 . ReadTimeout = timeout ;
53 return rs232 . ReadLine () ;
54 }
55
56 public string query (string data) {
57 send (data) ;
58 return read () ;
59 }
60
61 public string query (string data , int timeout) {
62 send (data) ;
63 return read (timeout) ;
64 }
65 }
66 }

Listing A.46: Class for communication with microcontroller (uC comm.cs)

A.6 Interface for Microsoft Robotics Studio

The below code is the implementation of the program described in section 4.5.6

Listing A.47: Main Program (FingerControl.cs)

1 //−−
2 // <auto−generated>
3 // This code was generated by a too l .
4 // Runtime Vers ion : 2 . 0 . 5 0727 . 1 433
5 //
6 // Changes to t h i s f i l e may cause i n c o r r e c t behavior and w i l l be l o s t i f
7 // the code i s regenerated .
8 // </auto−generated>
9 //−−

10
11 using Microso f t . Ccr . Core ;
12 using Microso f t . Dss . Core ;
13 using Microso f t . Dss . Core . DsspHttp ;
14 using Microso f t . Dss . Core . At t r ibute s ;
15 using Microso f t . Dss . ServiceModel . Dssp ;
16 using Microso f t . Dss . ServiceModel . DsspServiceBase ;
17 using System ;
18 using System . Co l l e c t i on s . Generic ;
19 using System . ComponentModel ;
20 using System .Xml ;
21 using W3C. Soap ;
22 using f i n g e r c o n t r o l = Robotics . FingerContro l ;
23
24
25 namespace Robotics . FingerContro l
26 {
27
28
29 /// <summary>
30 /// Implementation c l a s s f o r FingerContro l
31 /// </summary>
32 [DisplayName (” FingerContro l ”)]
33 [Desc r ip t i on (”The FingerContro l Se rv i c e ”)]
34 [Contract (Contract . I d e n t i f i e r)]
35 public c lass FingerContro lSe rv i ce : DsspServiceBase
36 {
37 //HTML−schema
38 [EmbeddedResource (” Robotics . FingerContro l . FingerContro l . x s l t ”)]
39 string t rans form = null ;
40
41 /// <summary>
42 /// s t a t e
43 /// </summary>
44 private FingerContro lState s t a t e = new FingerContro lState () ;
45
46 /// <summary>
47 /// main Port
48 /// </summary>
49 [Serv i cePort (”/ f i n g e r c o n t r o l ” , A l lowMult ip l e Ins tances=f a l s e)]
50 private FingerContro lOperat ions mainPort = new FingerContro lOperat ions () ;
51
52 /// <summary>
53 /// Default Se rv i c e Constructor
54 /// </summary>
55 public FingerContro lSe rv i ce (DsspServ iceCreat ionPort c r ea t i onPor t) :
56 base (c r ea t i onPor t)
57 {
58 }
59
60 /// <summary>
61 /// Se rv i c e Star t
62 /// </summary>
63 protected override void Start ()
64 {
65 base . S tar t () ;
66 // Add s e r v i c e s p e c i f i c i n i t i a l i z a t i o n here .
67 }
68
69 /// <summary>
70 /// Get Handler
71 /// </summary>
72 /// <param name=”get”></param>
73 /// <returns ></returns >
74 [Serv iceHandler (Serv iceHandlerBehavior . Concurrent)]

152

75 public virtual IEnumerator<ITask> GetHandler (Get get)
76 {
77 get . ResponsePort . Post (s t a t e) ;
78 y i e l d break ;
79 }
80
81 /// <summary>
82 /// Http Get Handler
83 /// </summary>
84 [Serv iceHandler (Serv iceHandlerBehavior . Concurrent)]
85 public IEnumerator<ITask> HttpGetHandler (HttpGet httpGet) {
86 // httpGet . ResponsePort . Post (new HttpResponseType (s t a t e)) ;
87 httpGet . ResponsePort . Post (new HttpResponseType (System . Net . HttpStatusCode .OK, s ta t e , t rans form)) ;
88 y i e l d break ;
89 }
90 }
91 }

Listing A.47: Main Program (FingerControl.cs)

Listing A.48: Type definitions (FingerControlTypes.cs)

1 //−−
2 // <auto−generated>
3 // This code was generated by a too l .
4 // Runtime Vers ion : 2 . 0 . 5 0727 . 1 433
5 //
6 // Changes to t h i s f i l e may cause i n c o r r e c t behavior and w i l l be l o s t i f
7 // the code i s regenerated .
8 // </auto−generated>
9 //−−

10
11 using Microso f t . Ccr . Core ;
12 using Microso f t . Dss . Core . At t r ibute s ;
13 using Microso f t . Dss . ServiceModel . Dssp ;
14 using Microso f t . Dss . Core . DsspHttp ;
15 using System ;
16 using System . Co l l e c t i on s . Generic ;
17 using W3C. Soap ;
18 using f i n g e r c o n t r o l = Robotics . FingerContro l ;
19
20
21 namespace Robotics . FingerContro l
22 {
23
24
25 /// <summary>
26 /// FingerContro l Contract c l a s s
27 /// </summary>
28 public sealed class Contract
29 {
30
31 /// <summary>
32 /// The Dss Se rv i c e cont rac t
33 /// </summary>
34 public const Str ing I d e n t i f i e r = ” http :// schemas . tempuri . org /2008/05/ f i n g e r c o n t r o l . html” ;
35 }
36
37 /// <summary>
38 /// The FingerContro l State
39 /// </summary>
40 [DataContract ()]
41 public c lass FingerContro lState
42 {
43 // **** Datamembers ****

44 private string uCStatus = ”Not connected ” ;
45 [DataMember]
46 public string uCStatus { get { return uCStatus ; } s e t { uCStatus = value ; } }
47
48
49 // **** End Datamembers ****

50
51 }
52
53 /// <summary>
54 /// FingerContro l Main Operations Port
55 /// </summary>
56 [Serv i cePort ()]
57 public c lass FingerContro lOperat ions : PortSet<DsspDefaultLookup , DsspDefaultDrop , Get , HttpGet>
58 {
59 }
60
61 /// <summary>
62 /// FingerContro l Get Operation
63 /// </summary>
64 public c lass Get : Get<GetRequestType , PortSet<FingerContro lState , Fault>>
65 {
66
67 /// <summary>
68 /// FingerContro l Get Operation
69 /// </summary>
70 public Get ()
71 {
72 }
73
74 /// <summary>
75 /// FingerContro l Get Operation
76 /// </summary>
77 public Get (Microso f t . Dss . ServiceModel . Dssp . GetRequestType body) :
78 base (body)
79 {
80 }
81
82 /// <summary>
83 /// FingerContro l Get Operation
84 /// </summary>

153

85 public Get (Microso f t . Dss . ServiceModel . Dssp . GetRequestType body , Microso f t . Ccr . Core . PortSet<
FingerContro lState ,W3C. Soap . Fault> responsePort) :

86 base (body , responsePort)
87 {
88 }
89 }
90 }

Listing A.48: Type definitions (FingerControlTypes.cs)

Listing A.49: Web interface structure (FingerControl.xslt)

1 ı̈�¿<?xml version=” 1.0 ” encoding=”UTF−8” ?>
2 <x s l : s t y l e s h e e t version=” 1.0 ”
3 xmlns :x s l=” ht tp : //www. w3 . org /1999/XSL/Transform”
4 xmlns : f c=” ht tp : // schemas . tempuri . org /2008/05/ f i n g e r c o n t r o l . html”>
5
6 <xs l : impor t h r e f=”/ r e s ou r c e s / dss / Microso f t . Dss . Runtime .Home . MasterPage . x s l t ” />
7 <xs l : ou tpu t method=”html”/>
8
9 <x s l : t emp l a t e match=”/ f c :F inge rCont ro lS ta t e ”>

10 <html>
11 <head>
12 < t i t l e>FingerContro l</ t i t l e>
13 <l i n k r e l=” s t y l e s h e e t ” type=” text / c s s ” h r e f=”/ r e s ou r c e s / dss / Microso f t . Dss . Runtime .Home . S ty l e s .Common.

c s s ” />
14 </head>
15 <body>
16 <h1>FingerContro l</h1>
17 <tab l e border=”1”>
18 <t r>
19 <th width=”100”>Sta tu s :</th>
20 <td width=”200”><x s l : v a l u e−o f s e l e c t=” fc :uCStatus ”/></td>
21 </ t r>
22 </ tab l e>
23

24
25 <tab l e border=”1”>
26 <t r>
27 <th>Property</th>
28 <th co l span=”3”><cente r>Values</ cente r></th>
29 </ t r>
30 <t r>

31 <th width=”100”>Â </th>
32 <th width=”100”>Channel 0</th>
33 <th width=”100”>Channel 1</th>
34 <th width=”100”>Channel 2</th>
35 </ t r>
36 <t r>
37 <th>PWM</th>
38 <td>0%</td>
39 <td>0%</td>
40 <td>0%</td>
41 </ t r>
42 <t r>
43 <th>De f l e c t i on</th>

44 <td>0Â°</td>

45 <td>0Â°</td>

46 <td>0Â°</td>
47 </ t r>
48 <t r>
49 <th>Force</th>
50 <td>0N</td>
51 <td>0N</td>
52 <td>0N</td>
53 </ t r>
54 <t r>
55 <th>Current</th>
56 <td>0 .0A</td>
57 <td>0 .0A</td>
58 <td>0 .0A</td>
59 </ t r>
60 </ tab l e>
61

62
63 <tab l e border=”1”>
64 <t r>
65 <th>Property</th>
66 <th co l span=”4”>
67 <cente r>Values</ cente r>
68 </th>
69 </ t r>
70 <t r>

71 <th width=”100”>Â </th>
72 <th width=”100”>Channel 0</th>
73 <th width=”100”>Channel 1</th>
74 <th width=”100”>Channel 2</th>

75 <th width=”50”>Â </th>
76 </ t r>
77 <t r>
78 <th>PWM</th>
79 <td>
80 <input type=” text ” name=”pwm0” s i z e=”5”>
81 </ input>%
82 </td>
83 <td>
84 <input type=” text ” name=”pwm1” s i z e=”5”>
85 </ input>%
86 </td>
87 <td>
88 <input type=” text ” name=”pwm2” s i z e=”5”>
89 </ input>%
90 </td>
91 <td>
92 <cente r>
93 <input type=”submit” value=” se t ”/>

154

94 </ cente r>
95 </td>
96 </ t r>
97 <t r>
98 <th>De f l e c t i on</th>
99 <td>

100 <input type=” text ” name=” def0 ” s i z e=”5”>

101 </ input>Â°

102 </td>
103 <td>
104 <input type=” text ” name=” def1 ” s i z e=”5”>

105 </ input>Â°

106 </td>
107 <td>
108 <input type=” text ” name=” def2 ” s i z e=”5”>

109 </ input>Â°

110 </td>
111 <td>
112 <cente r>
113 <input type=”submit” value=” se t ”/>
114 </ cente r>
115 </td>
116 </ t r>
117 <t r>
118 <th>Force</th>
119 <td>
120 <input type=” text ” name=” fo r0 ” s i z e=”5”>
121 </ input>N
122 </td>
123 <td>
124 <input type=” text ” name=” fo r1 ” s i z e=”5”>
125 </ input>N
126 </td>
127 <td>
128 <input type=” text ” name=” fo r2 ” s i z e=”5”>
129 </ input>N
130 </td>
131 <td>
132 <cente r>
133 <input type=”submit” value=” se t ”/>
134 </ cente r>
135 </td>
136 </ t r>
137
138 </ tab l e>
139 </body>
140 </html>
141 </ x s l : t emp l a t e>
142 </ x s l : s t y l e s h e e t>

Listing A.49: Web interface structure (FingerControl.xslt)

A.7 Matlab Scripts for Data Analysis

The below code is used to analyze and plot the data results from testing of Flexinol.

Listing A.50: Analysis of fixated Flexinol wire (FlexinolAnalyzeFixation.m)

1 %Scr ip t f o r ana lyz ing data from Fixated wire
2
3 %data = f i x run1 ;
4 data = f i x o l d 5 ;
5
6 %Def in ing data columns
7 colDout = 3 ;
8 colAin = 2 ;
9 co lP l o t = [2 3] ;

10 th = 30 ;
11
12 %Analyzing peak count and l o c a t i o n s
13 [n , l oc sR i se , l o c s F a l l] = Flex ino lPeaks (data , colDout) ;
14 cy c l e s = n
15
16 %Finding minimum and maximum fo r c e
17 max force = max(data (: , co lAin))
18 min force = min(data (: , co lAin))
19
20 %Finding delay va lues
21 delayCurve = FlexinolDelayCurve (data (: , co lAin) , data (: , 1) , l o c sR i s e) ;
22
23 %Finding f o r c e d i f f e r e n c e in each cont rac t i on (max−min)
24 deltaCurve = Flex ino lDeltaCurve (data (: , co lAin) , l oc sR i se , l o c s F a l l) ;
25
26 close a l l
27
28 %Plo t t ing delay va lues
29 axes (’ FontSize ’ , 12)
30 plot (delayCurve , ’ r ’ , ’ LineWidth ’ , 1)
31 w = s ize (delayCurve) ;
32 axis ([0 w(1) 0 3])
33 grid on
34 xlabel (’Run #’ , ’ FontSize ’ , 14)
35 ylabel (’ Delay [s] ’ , ’ FontSize ’ , 14)
36 %legend (’ Delay ’)
37
38 %Plo t t ing f o r c e d i f f e r e n c e s
39 f igure
40 axes (’ FontSize ’ , 12)
41 plot (deltaCurve , ’ LineWidth ’ , 2)
42 axis ([0 n 0 40])
43 grid on

155

44 xlabel (’Run #’ , ’ FontSize ’ , 14)
45 ylabel (’ Force [N] ’ , ’ FontSize ’ , 14)
46 %legend (’ Force ’)
47
48 %Plo t t ing 3 f i r s t c y c l e s
49 f igure
50 t e s t = data (1 : 4 0 0 , :) ;
51 axes (’ FontSize ’ , 12)
52 plot (t e s t (: , 1) *0 .1 , t e s t (: , 2) , ’ r ’ , ’ LineWidth ’ , 2)
53 hold on
54 plot (t e s t (: , 1) *0 .1 , t e s t (: , 3) *8 , ’b ’ , ’ LineWidth ’ , 2)
55 grid on
56 xlabel (’Time [s] ’ , ’ FontSize ’ , 14)
57 ylabel (’ Force [N] / Output [On/ Off] ’ , ’ FontSize ’ , 14)
58 legend (’ Force ’ , ’ D i g i t a l Output ’)
59
60 %return
61
62 %Plo t t ing d i f f e r e n c e between f i r s t cont rac t i on and l a t e cont rac t i on
63 %Index er t i l p a s s e t f i x run2
64 f igure
65 plen = 200;
66 s t a r t 0 = 100000−100+356;
67 y0a = data (s t a r t 0 : s t a r t 0+plen , 2) ;
68 y0b = data (s t a r t 0 : s t a r t 0+plen , 3) *5 ;
69 x0 = data (s t a r t 0 : s t a r t 0+plen , 1)−data (s tar t0 , 1) ;
70 %s ta r t 1 = 1532692;
71 s t a r t 1 = 900000−25+175;
72 y1a = data (s t a r t 1 : s t a r t 1+plen , 2) ;
73 y1b = data (s t a r t 1 : s t a r t 1+plen , 3) *5 ;
74 x1 = data (s t a r t 1 : s t a r t 1+plen , 1)−data (s tar t1 , 1) ;
75 axes (’ FontSize ’ , 12)
76 plot (x0 *0 .1 , y0a , ’ r ’ , ’ LineWidth ’ , 2)
77 hold on
78 plot (x1 *0 .1 , y1a , ’b ’ , ’ LineWidth ’ , 2)
79 %plo t (x0 *0 .1 , y0b , ’ g ’ , ’ LineWidth ’ , 2)
80 plot (x1 *0 .1 , y1b , ’ k ’ , ’ LineWidth ’ , 2)
81 axis ([0 70 0 40]) ;
82 grid on
83 xlabel (’Time [s] ’ , ’ FontSize ’ , 14)
84 ylabel (’ Force [N] / Output [On/ Off] ’ , ’ FontSize ’ , 14)
85 legend (’ Force (a f t e r 500 cy c l e s) ’ , ’ Force (a f t e r 4500 cy c l e s) ’ , ’ D i g i t a l Output ’)

Listing A.50: Analysis of fixated Flexinol wire (FlexinolAnalyzeFixation.m)

Listing A.51: Analysis of a Flexinol antagonist (FlexinolAnalyzeFlexinolAntagonist.m)

1 %Scr ip t f o r ana lyz ing data from Fl ex ino l antagon i s t
2
3 data = f l e x run3 ;
4 %data (: , 3) = data (: , 3) − ((data (: , 3) >10)*10) ;
5
6 %Se l e c t i n g data columns
7 colDout = 5 ;
8 colAin = 3 ;
9 co lP l o t = [2 3 4 5] ;

10
11 % Plo t t ing a l l va lues
12 close a l l
13 F l ex ino lP l o t (data , co lP lot , 1)
14 legend (’ Force ’ , ’ De f l e c t i on ’ , ’Dout agon i s t ’ , ’Dout antagon i s t ’)
15
16
17 %Plo t t ing s e l e c t e d data
18 f igure
19 %n0 = 1 ; %run1
20 %l = 1000; %run1
21 n0 = 120; %run3
22 l = 230 ; %run3
23 t e s t = data (n0 : n0+l , :) ;
24 axes (’ FontSize ’ , 12)
25 x = (t e s t (: , 1)−data (n0 , 1)) * 0 . 1 ;
26 plot (x , t e s t (: , 2) , ’ r ’ , ’ LineWidth ’ , 2)
27 hold on
28 plot (x , t e s t (: , 3) , ’b ’ , ’ LineWidth ’ , 2)
29 plot (x , t e s t (: , 4) , ’ g ’ , ’ LineWidth ’ , 2)
30 plot (x , t e s t (: , 5) , ’ k ’ , ’ LineWidth ’ , 2)
31 grid on
32 %ax i s ([0 80 0 8]) ;
33 xlabel (’Time [s] ’ , ’ FontSize ’ , 14)
34 ylabel (’ De f l e c t i on [cm] / Force [N] / Output [On/ Off] ’ , ’ FontSize ’ , 14)
35 legend (’ Force ’ , ’ De f l e c t i on ’ , ’Dout agon i s t ’ , ’Dout antagon i s t ’)
36
37
38
39 %Analyzing peak count and l o c a t i o n s
40 [n , l oc sR i se , l o c s F a l l] = Flex ino lPeaks (data , colDout) ;
41 cy c l e s = n
42
43 %Finding d i f f e r e n c e s between min and max
44 deltaCurve = Flex ino lDeltaCurve (data (: , co lAin) , l oc sR i se , l o c s F a l l) ;
45
46 %Finding d i f f e r e n c e s f o r antagon i s t wire
47 deltaCurve2 = FlexinolMaxCurve (data (: , 2) , l oc sR i se , l o c s F a l l) ;
48
49 % Finding max va lues
50 max delta = max(deltaCurve .* (deltaCurve <3.5))
51 min de l ta = min(deltaCurve)
52
53 f igure
54 axes (’ FontSize ’ , 12)
55
56 %Plo t t ing va lues
57 plot (deltaCurve2 , ’ r ’ , ’ LineWidth ’ , 1)
58 hold on
59 plot (deltaCurve , ’b ’ , ’ LineWidth ’ , 2)
60 axis ([0 5000 −0.5 12]) %run3

156

61 grid on
62 xlabel (’ Cycle #’)
63 ylabel (’ De f l e c t i on [cm] / Force [N] ’)
64 legend (’ Force ’ , ’ De f l e c t i on ’)

Listing A.51: Analysis of a Flexinol antagonist (FlexinolAnalyzeFlexinolAntagonist.m)

Listing A.52: Analysis of Flexinol with heavy load (FlexinolAnalyzeHeavyLoad.m)

1 %Scr ip t f o r ana lyz ing data from heavy loaded wire
2
3 data = heavy run5 ;
4 %data (: , 3) = data (: , 3) − ((data (: , 3) >10)*10) ;
5
6 %Se l e c t i n g data columns
7 colDout = 3 ;
8 colAin = 2 ;
9 co lP l o t = 2 ;

10 th = 30 ;
11
12 %Analyzing peak count and l o c a t i o n s
13 [n , l oc sR i se , l o c s F a l l] = Flex ino lPeaks (data , colDout) ;
14 cy c l e s = n
15
16 %Analyzing d i f f e r e n c e s between min and max displacement
17 deltaCurve = Flex ino lDeltaCurve (data (: , co lAin) , l oc sR i se , l o c s F a l l) ;
18
19 %Analyzing max and min displacement
20 max delta = max(deltaCurve .* (deltaCurve <3.5))
21 min de l ta = min(deltaCurve)
22
23 %Analyzing delay curve
24 delayCurve = FlexinolDelayCurve2 (data (: , co lAin) , data (: , 1) , l oc sR i se , 50 , 2) ;
25
26 close a l l
27 % Color c o l l e c t i o n
28 c o l o r s = [’ r ’ ’ g ’ ’b ’ ’ k ’] ;
29 axes (’ FontSize ’ , 12)
30
31 %Plo t t ing a l l data
32 for i =1: length (co lP l o t)
33 plot (data (: , 1) *0 .1* (1/86400) , data (: , c o lP l o t (i)) , c o l o r s (i) , ’ LineWidth ’ , 1)
34 hold on
35 end
36 axis ([0 data (length (data (: , 1)) ,1) *0 .1* (1/86400) −0.5 5 . 5])
37 grid on
38 xlabel (’Time [days] ’ , ’ FontSize ’ , 14)
39 ylabel (’ De f l e c t i on [cm] ’ , ’ FontSize ’ , 14)
40
41
42 %Plo t t ing d i f f e r e n c e between max and min
43 f igure
44 axes (’ FontSize ’ , 12)
45 plot (deltaCurve , ’ r ’ , ’ LineWidth ’ , 2)
46 axis ([0 n 0 5])
47 grid on
48 xlabel (’Run #’ , ’ FontSize ’ , 14)
49 ylabel (’ De f l e c t i on [cm] ’ , ’ FontSize ’ , 14)
50
51
52 %Plo t t ing 2 cy c l e s from heavy run5
53 f igure
54 t e s t = data (42000 : 42300 , :) ;
55 axes (’ FontSize ’ , 12)
56 x = (t e s t (: , 1)−data (42000 ,1)) * 0 . 1 ;
57 plot (x , t e s t (: , 2) , ’ r ’ , ’ LineWidth ’ , 2)
58 hold on
59 plot (x , t e s t (: , 3) *0 .9 , ’b ’ , ’ LineWidth ’ , 2)
60 grid on
61 axis ([0 80 0 5]) ;
62 xlabel (’Time [s] ’ , ’ FontSize ’ , 14)
63 ylabel (’ De f l e c t i on [cm] / Output [On/ Off] ’ , ’ FontSize ’ , 14)
64 legend (’ De f l e c t i on ’ , ’ D i g i t a l Output ’)
65
66 %Plo t t ing delay curves
67 f igure
68 axes (’ FontSize ’ , 12)
69 plot (delayCurve , ’ r ’ , ’ LineWidth ’ , 1)
70 w = s ize (delayCurve) ;
71 axis ([0 w(1) 0 4])
72 grid on
73 xlabel (’Run #’ , ’ FontSize ’ , 14)
74 ylabel (’ Delay [s] ’ , ’ FontSize ’ , 14)

Listing A.52: Analysis of Flexinol with heavy load (FlexinolAnalyzeHeavyLoad.m)

Listing A.53: Analysis of single PWM control (FlexinolAnalyzePwm.m)

1 %Scr ip t f o r p l o t t i n g s i n g l e PWM measurement
2
3 %Var iab le s e l e c t i o n
4 %data = reg 010 ;
5 %data = reg 050 ;
6 %data = reg 100 ;
7 %data = reg 150 ;
8 data = reg 200 ;
9

10 %Plo t t ing data
11 axes (’ FontSize ’ , 12)
12 plot (data (: , 1) , (data (: , 2)−data (1 ,2)) *2 .1 , ’ r ’ , ’ LineWidth ’ , 1)

157

13 axis ([0 10 0 4])
14 grid on
15 xlabel (’Time [s] ’ , ’ FontSize ’ , 14)
16 ylabel (’ De f l e c t i on [cm] ’ , ’ FontSize ’ , 14)

Listing A.53: Analysis of single PWM control (FlexinolAnalyzePwm.m)

Listing A.54: Analysis of linearity in PWM control (FlexinolAnalyzePwm 150.m)

1 %Scr ip t f o r p l o t t i n g s e r i e s o f s tep r egu l a t i on r e s u l t s
2
3 %I n i t i a l i z i n g data va r i ab l e
4 data = zeros (400 ,27*2) ;
5
6 %PWM values s e r i e s 1−10
7 data (: , 1 : 2) = reg 150 000 (1 : 4 0 0 , :) ;
8 data (: , 3 : 4) = reg 150 010 (1 : 4 0 0 , :) ;
9 data (: , 5 : 6) = reg 150 020 (1 : 4 0 0 , :) ;

10 data (: , 7 : 8) = reg 150 030 (1 : 4 0 0 , :) ;
11 data (: , 9 : 1 0) = reg 150 040 (1 : 4 0 0 , :) ;
12 data (: , 1 1 : 1 2) = reg 150 050 (1 : 4 0 0 , :) ;
13 data (: , 1 3 : 1 4) = reg 150 060 (1 : 4 0 0 , :) ;
14 data (: , 1 5 : 1 6) = reg 150 070 (1 : 4 0 0 , :) ;
15 data (: , 1 7 : 1 8) = reg 150 080 (1 : 4 0 0 , :) ;
16 data (: , 1 9 : 2 0) = reg 150 090 (1 : 4 0 0 , :) ;
17
18 %PWM values s e r i e s 11−20
19 data (: , 2 1 : 2 2) = reg 150 100 (1 : 4 0 0 , :) ;
20 data (: , 2 3 : 2 4) = reg 150 110 (1 : 4 0 0 , :) ;
21 data (: , 2 5 : 2 6) = reg 150 120 (1 : 4 0 0 , :) ;
22 data (: , 2 7 : 2 8) = reg 150 130 (1 : 4 0 0 , :) ;
23 data (: , 2 9 : 3 0) = reg 150 140 (1 : 4 0 0 , :) ;
24 data (: , 3 1 : 3 2) = reg 150 150 (1 : 4 0 0 , :) ;
25 data (: , 3 3 : 3 4) = reg 150 160 (1 : 4 0 0 , :) ;
26 data (: , 3 5 : 3 6) = reg 150 170 (1 : 4 0 0 , :) ;
27 data (: , 3 7 : 3 8) = reg 150 180 (1 : 4 0 0 , :) ;
28 data (: , 3 9 : 4 0) = reg 150 190 (1 : 4 0 0 , :) ;
29
30 %PWM values s e r i e s 20−27
31 data (: , 4 1 : 4 2) = reg 150 200 (1 : 4 0 0 , :) ;
32 data (: , 4 3 : 4 4) = reg 150 210 (1 : 4 0 0 , :) ;
33 data (: , 4 5 : 4 6) = reg 150 220 (1 : 4 0 0 , :) ;
34 data (: , 4 7 : 4 8) = reg 150 230 (1 : 4 0 0 , :) ;
35 data (: , 4 9 : 5 0) = reg 150 240 (1 : 4 0 0 , :) ;
36 data (: , 5 1 : 5 2) = reg 150 250 (1 : 4 0 0 , :) ;
37 data (: , 5 3 : 5 4) = reg 150 255 (1 : 4 0 0 , :) ;
38
39
40 %Plo t t ing a l l s e r i e s
41 close a l l
42 axes (’ FontSize ’ , 12)
43 m = zeros (27 ,2) ;
44 for i =1:27
45 plot (data (: , i *2−1) , (data (: , i *2)−data (1 , i *2)) *2 .1 , ’ r ’ , ’ LineWidth ’ , 1)
46 hold on
47
48 m(i , 2) = mean(data (150 :400 , i *2)) ;
49 m(i , 1) = i *10 −10;
50 end
51 m(27 ,1) = 255 ;
52
53 axis ([0 10 0 4])
54 grid on
55 xlabel (’Time [s] ’ , ’ FontSize ’ , 14)
56 ylabel (’ De f l e c t i on [cm] ’ , ’ FontSize ’ , 14)
57
58 %Plo t t ing l i n e a r i t y
59 f igure
60 plot (m(: , 1) * (100/255) , (m(: , 2)−m(1 ,2)) *2 .1)
61 axis ([−5 105 0 4])
62 grid on
63 xlabel (’ Contract ion step [%] ’ , ’ FontSize ’ , 14)
64 ylabel (’ De f l e c t i on [cm] ’ , ’ FontSize ’ , 14)

Listing A.54: Analysis of linearity in PWM control (FlexinolAnalyzePwm 150.m)

Listing A.55: Analysis of Flexinol with small load (FlexinolAnalyzeSmallLoad.m)

1 %Scr ip t f o r ana lyz ing smal l load
2 data = smal l run4 ;
3 %data (: , 3) = data (: , 3) − ((data (: , 3) >10)*10) ;
4
5 %Se l e c t i n g data columns
6 colDout = 3 ;
7 colAin = 2 ;
8 co lP l o t = 2 ;
9 th = 30 ;

10
11 %Analyzing peak count and l o c a t i o n s
12 [n , l oc sR i se , l o c s F a l l] = Flex ino lPeaks (data , colDout) ;
13 cy c l e s = n
14
15 %Analyzing d i f f e r e n c e between max and min displacement
16 deltaCurve = Flex ino lDeltaCurve (data (: , co lAin) , l oc sR i se , l o c s F a l l) ;
17
18 %Finding max and min displacement
19 max delta = max(deltaCurve .* (deltaCurve <3.5))
20 min de l ta = min(deltaCurve)
21
22 close a l l

158

23 c o l o r s = [’ r ’ ’ g ’ ’b ’ ’ k ’] ;
24 axes (’ FontSize ’ , 12)
25
26 %Plo t t ing a l l data
27 for i =1: length (co lP l o t)
28 plot ((data (: , 1)−data (1 ,1)) *0 .1* (1/86400) , data (: , c o lP l o t (i)) , c o l o r s (i) , ’ LineWidth ’ , 1)
29 hold on
30 end
31 %ax i s ([0 data (length (data (: , 1)) ,1) *0 .1* (1/86400) 0 5])
32 grid on
33 xlabel (’Time [days] ’ , ’ FontSize ’ , 14)
34 ylabel (’ De f l e c t i on [cm] ’ , ’ FontSize ’ , 14)
35
36 %Plo t t ing d i f f e r e n c e s
37 f igure
38 axes (’ FontSize ’ , 12)
39 plot (deltaCurve , ’ r ’ , ’ LineWidth ’ , 2)
40 axis ([0 n 0 5])
41 grid on
42 xlabel (’Run #’ , ’ FontSize ’ , 14)
43 ylabel (’ De f l e c t i on [cm] ’ , ’ FontSize ’ , 14)
44
45
46 %Plo t t ing 2 cy c l e s from smal l run4
47 f igure
48 t e s t = data (42050 : 42500 , :) ;
49 axes (’ FontSize ’ , 12)
50 x = (t e s t (: , 1)−data (42050 ,1)) * 0 . 1 ;
51 plot (x , t e s t (: , 2) , ’ r ’ , ’ LineWidth ’ , 2)
52 hold on
53 plot (x , t e s t (: , 3) *0 .9 , ’b ’ , ’ LineWidth ’ , 2)
54 grid on
55 axis ([0 120 0 5]) ;
56 xlabel (’Time [s] ’ , ’ FontSize ’ , 14)
57 ylabel (’ De f l e c t i on [cm] / Output [On/ Off] ’ , ’ FontSize ’ , 14)
58 legend (’ De f l e c t i on ’ , ’ D i g i t a l Output ’)

Listing A.55: Analysis of Flexinol with small load (FlexinolAnalyzeSmallLoad.m)

Listing A.56: Analysis of a spring antagonist (FlexinolAnalyzeSpringAntagonist.m)

1 %Scr ip t f o r ana lyz ing data from spr ing antagon i s t
2 data = spr ing run3 ;
3 %data (: , 3) = data (: , 3) − ((data (: , 3) >10)*10) ;
4
5 %Se l e c t i n g data columns
6 colDout = 4 ;
7 colAin = 3 ;
8 co lP l o t = [4 3 2] ;
9

10 %Analyzing peak count and l o c a t i o n s
11 [n , l oc sR i se , l o c s F a l l] = Flex ino lPeaks (data , colDout) ;
12 cy c l e s = n
13
14 %Analyzing d i f f e r e n c e between max and min displacement
15 deltaCurve = Flex ino lDeltaCurve (data (: , co lAin) , l oc sR i se , l o c s F a l l) ;
16
17 %Analyzing d i f f e r e n c e between max and min f o r c e
18 deltaCurve2 = Flex ino lDeltaCurve (data (: , 2) , l o c sR i se , l o c s F a l l) ;
19
20 %Plo t t ing a l l data
21 close a l l
22 F l ex ino lP l o t (data , co lP l o t)
23
24 %Plo t t ing d i f f e r e n c e s
25 f igure
26 axes (’ FontSize ’ , 12)
27 plot (deltaCurve , ’b ’ , ’ LineWidth ’ , 2)
28 grid on
29 xlabel (’ Cycle #’)
30 ylabel (’ De f l e c t i on [cm] / Force [N] ’)
31 %legend (’ De f l e c t i on ’ , ’ Force ’)
32
33 %Plo t t ing 2 cont rac t i on cy c l e s
34 f igure
35 n0 = 500;
36 l = 250 ;
37 t e s t = data (n0 : n0+l , :) ;
38 axes (’ FontSize ’ , 12)
39 x = (t e s t (: , 1)−data (n0 , 1)) * 0 . 1 ;
40 plot (x , t e s t (: , 2) , ’ r ’ , ’ LineWidth ’ , 2)
41 hold on
42 plot (x , t e s t (: , 3) , ’b ’ , ’ LineWidth ’ , 2)
43 plot (x , t e s t (: , 4) , ’ g ’ , ’ LineWidth ’ , 2)
44 grid on
45 axis ([0 80 0 8]) ;
46 xlabel (’Time [s] ’ , ’ FontSize ’ , 14)
47 ylabel (’ De f l e c t i on [cm] / Force [N] / Output [On/ Off] ’ , ’ FontSize ’ , 14)
48 legend (’ Force ’ , ’ De f l e c t i on ’ , ’ D i g i t a l Output ’)

Listing A.56: Analysis of a spring antagonist (FlexinolAnalyzeSpringAntagonist.m)

A.7.1 Help Scripts

Listing A.57: Script for finding all contractions (FlexinolPeaks.m)

159

1 %Scr ip t f o r f i nd ing number o f F l ex ino l c on t r a c t i on s
2 function [cont rac t i ons , l oc sR i se , l o c s F a l l] = Flex ino lPeaks (data , contractColumn)
3
4 data1 = data (: , contractColumn) ;
5
6 x = data1 (:) ;
7 upordown = sign (d i f f (x)) ;
8
9 RiseFlags = upordown >0;

10 l o c sR i s e = find (RiseFlags) ;
11
12 Fa l lF lag s = upordown <0;
13 l o c s F a l l = find (Fa l lF lag s) ;
14
15 con t ra c t i on s = sum(RiseFlags) ;

Listing A.57: Script for finding all contractions (FlexinolPeaks.m)

Listing A.58: Calculation of delay for displacement (FlexinolDelayCurve.m)

1 %Scr ip t f o r c a l c u l a t i n g time be fo r e a given displacment i s achieved (2cm)
2 function delayCurve = FlexinolDelayCurve (Ain , T, l o c sR i s e)
3
4 delayCurve = zeros (length (l o c sR i s e)−1 ,1) ;
5
6 for i =1: length (l o c sR i s e)−1
7 maxLoc = −1;
8 for j=l o c sR i s e (i) : l o c sR i s e (i)+15
9 i f j >= length (T)

10 maxLoc = −1;
11 break
12 end
13
14 i f Ain (j) >= 2
15 maxLoc = j−l o c sR i s e (i) ;
16 break
17 end
18 end
19 i f maxLoc == −1
20 delayCurve (i) = −1;
21 else
22 delayCurve (i) = (T(l o c sR i s e (i)+maxLoc) − T(l o c sR i s e (i))) * 0 . 1 ;
23 i f delayCurve (i) > 2 , delayCurve (i) = 2 ; end
24 %i f delayCurve (i) > 2 , delayCurve (i) = delayCurve (i−1) ; end
25 %coord = [l o c sR i s e (i) ; l o c sR i s e (i)+maxLoc ; T(l o c sR i s e (i)+maxLoc) − T(l o c sR i s e (i))]
26 end
27 end

Listing A.58: Calculation of delay for displacement (FlexinolDelayCurve.m)

Listing A.59: Calculation of delay for force (FlexinolDelayCurve2.m)

1 %Scr ip t f o r c a l c u l a t i n g the delay be fo r e a f o r c e F i s reached
2 function delayCurve = FlexinolDelayCurve2 (Ain , T, l oc sRi se , steps , F)
3
4 delayCurve = zeros (length (l o c sR i s e)−1 ,1) ;
5
6 for i =1: length (l o c sR i s e)−1
7 maxLoc = −1;
8 for j=l o c sR i s e (i) : l o c sR i s e (i)+s teps
9 i f j >= length (T)

10 maxLoc = −1;
11 break
12 end
13
14 i f Ain (j) >= F
15 maxLoc = j−l o c sR i s e (i) ;
16 break
17 end
18 end
19 i f maxLoc == −1
20 delayCurve (i) = −1;
21 else
22 delayCurve (i) = (T(l o c sR i s e (i)+maxLoc) − T(l o c sR i s e (i))) * 0 . 1 ;
23 %i f delayCurve (i) > 4 , delayCurve (i) = 4 ; end
24 i f delayCurve (i) > 2 . 5 , delayCurve (i) = delayCurve (i−1) ; end
25 %coord = [l o c sR i s e (i) ; l o c sR i s e (i)+maxLoc ; T(l o c sR i s e (i)+maxLoc) − T(l o c sR i s e (i))]
26 end
27 end

Listing A.59: Calculation of delay for force (FlexinolDelayCurve2.m)

Listing A.60: Calculation of absolute displacement or force (FlexinolDeltaCurve.m)

1 % Scr ip t f o r c a l c u l a t i n g d i f f e r e n c e between maximum and minimum values in
2 % data
3 function deltaCurve = Flex ino lDeltaCurve (data , l oc sR i se , l o c s F a l l)
4
5 deltaCurve = zeros (length (l o c sR i s e)−1 ,1) ;
6 for i =1: length (l o c sR i s e)−1
7 %deltaCurve (i) = data (l o c s (i)+2) − data (l o c s (i +1)−10) ;
8 deltaCurve (i) = data (l o c s F a l l (i)) − data (l o c sR i s e (i)) ;
9 end

160

Listing A.60: Calculation of absolute displacement or force (FlexinolDeltaCurve.m)

Listing A.61: Calculation of absolute displacement or force (FlexinolMaxCurve.m)

1 % Calcu la t e s d i f f e r e n c e between maximum and minimum values
2 function deltaCurve = FlexinolMaxCurve (data , l oc sR i se , l o c s F a l l)
3
4 deltaCurve = zeros (length (l o c sR i s e)−1 ,1) ;
5 for i =1: length (l o c sR i s e)−1
6 maxvalue = data (l o c sR i s e (i)) ;
7 for j=l o c sR i s e (i) : l o c s F a l l (i)
8 maxvalue = max(maxvalue , data (j)) ;
9 end

10 deltaCurve (i) = maxvalue ;
11 end

Listing A.61: Calculation of absolute displacement or force (FlexinolMaxCurve.m)

Listing A.62: Standardscript for plotting Flexinol data (FlexinolPlot.m)

1 %Plo t t ing a l l columns from data de f ined in co lP l o t
2 function Fl ex ino lP l o t (data , co lP lot , vararg in)
3 i f length (vararg in) > 0 , w = ce l l2mat (vararg in) ; else w = 2; end
4
5 c o l o r s = [’ r ’ ’ g ’ ’b ’ ’ k ’] ;
6 axes (’ FontSize ’ , 12)
7
8 for i =1: length (co lP l o t)
9 plot (data (: , 1) *0 .1 , data (: , c o lP l o t (i)) , c o l o r s (i) , ’ LineWidth ’ , w(1))

10 hold on
11 end

Listing A.62: Standardscript for plotting Flexinol data (FlexinolPlot.m)

161

	uioforside
	master
	Introduction
	Humanoid Hands
	Robot Hand Actuation
	Flexinol - Artificial Muscle Fibers
	Thesis Overview
	Short Conclusion

	Background
	Anatomy of The Human Hand
	Skeleton
	Tendons and Muscles
	Robotic Approach to the Human Hand

	Traditional Actuators
	Hydraulics
	Pneumatics
	Servo Motors
	Stepper Motors
	Electric Solenoids

	Intelligent Materials used as Actuators
	Shape Memory Alloys in General
	Flexinol
	Electroactive Polymers

	Actuator Comparison
	Power to Weight Ratio

	Feedback Sensors
	Displacement Transducers
	Force Transducers

	Used Tools
	Atmel AVR Microcontrollers
	I/O-Ports
	Memory
	Interrupts
	Counters and Pulse Width Modulation (PWM)
	Universal Synchronous and Asynchronous Serial Receiver and Transmitter (USART)
	Analog to Digital Converter (ADC)
	Watchdog Timer
	Clock Source

	Keithley KUSB-3100
	Microsoft Robotics Studio
	Overview
	Concurrency and Coordination Runtime (CCR)
	Decentralized Software Services (DSS)
	Visual Programming Language (VPL)

	Own Methods
	Testing of Flexinol
	Fixation Test
	Degeneration Test
	Flexinol Antagonist
	Spring Antagonist
	PWM-controlled

	Test Frame
	Electronics Design
	Calibration

	Test Software
	Software for the Test Frame
	Web Application for Remote Surveillance

	Humanoid Finger Design
	Anatomical Model
	3D Design

	Humanoid Finger Application
	Mechanical Design
	Electrical Schematics
	Communication
	Microcontroller Program
	Computer Interface Program
	Interface for Microsoft Robotics Studio

	Summary of Own Methods

	Experiments
	Calibration Results
	Displacement Calibration
	Force Calibration

	Testing of Flexinol
	Test Software
	Fixation Test
	Degeneration Test
	Flexinol Antagonist
	Spring Antagonist
	PWM-Control
	Summary

	Humanoid Finger Design
	Joints
	Tendons
	Friction

	Humanoid Finger Application
	Mechanics
	Electronics
	Software

	Regulation
	Finger Regulation
	PWM-Controlled
	Transformation Curve
	Hysteresis
	Delay

	Regulation Models by Other Authors
	Own Regulation Experiments
	Summary

	Future Work
	Flexinol Testing
	Regulation
	Developed Finger
	Electronics

	Conclusion
	Bibliography
	Code attachment
	Software for Test Frame Control and Measurement
	Software for Web Surveillance of Test Frame
	Microcontroller Program for PWM-Control
	Microcontroller Program for Finger Control
	Computer Interface Program
	Interface for Microsoft Robotics Studio
	Matlab Scripts for Data Analysis
	Help Scripts

